
Gang Liu and Hartmut Schmider

Centre for Advanced Computing (CAC)

{gang.liu, hartmut.schmider}@queensu.ca

http://cac.queensu.ca
1

HPC Summer School 2018

Distributed-Memory Programming with MPI

Kingston

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 2

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 3

MPI

 Message Passing Interface

 System of subroutines/functions for communication
between processes and facilities for such purpose in
Fortran (90), C, and C++.

 Used for parallel computing on any combination of
computers/clusters.

http://cac.queensu.ca 4

http://cac.queensu.ca 5

MPI Example 1 in Fortran
PROGRAM EXAMPLE01

USE MPI

INTEGER MYID, TOTPS, IERR

CALL MPI_INIT(IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYID, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, TOTPS, IERR)

WRITE(*,*)"Hello from rank:",MYID," of total", &

TOTPS, " processes."

CALL MPI_FINALIZE(IERR)

END

http://cac.queensu.ca 6

MPI Example 1 in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char* argv[])

{ int myid, totps;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_Comm_size(MPI_COMM_WORLD, &totps);

printf (“Hi from rank: %d of %d processes.\n",

myid, totps);

MPI_Finalize();

}

http://cac.queensu.ca 7

MPI Example 1 in C++
#include <mpi.h>

#include <stdio.h>

int main()

{ MPI::Intracomm commall = MPI::COMM_WORLD;

MPI::Init();

int myid = commall.Get_rank();

int totps = commall.Get_size();

printf (“Hi from rank: %d of %d processes.\n",

myid, totps);

MPI::Finalize();

}

Lab works
 Login to your account in CAC (login.cac.queensu.ca)

 tar -xvf /global/project/workshop/mpi-lesson.tar

 [your_acount@caclogin02 ~]$

 salloc --reservation summer-school -A teaching
-n 4 --mem 8g

 salloc: Granted job allocation …

 [your_acount@cac034 ~]$

 Then you get 4 CPUs and 8GB memory to

use exclusively for the lab today.

http://cac.queensu.ca 8

Lab work # 1
 cd mpi

 cd F90 (C, CPP)

 cd f01 (c01, cpp01)

 cat f01.f (c01.c, cpp01.cpp)

 mpif90 f01.f (for FORTRAN) or

 mpicc c01.c (for c) or

 mpicxx cpp01.cpp (for C++)

 mpirun –np 4 ./a.out

http://cac.queensu.ca 9

Running Example 1

http://cac.queensu.ca 10

$ mpif90 f01.f

$ mpirun –np 9 ./a.out

Hello from rank: 0 of total 9 processes.

Hello from rank: 1 of total 9 processes.

Hello from rank: 2 of total 9 processes.

Hello from rank: 3 of total 9 processes.

Hello from rank: 5 of total 9 processes.

Hello from rank: 6 of total 9 processes.

Hello from rank: 7 of total 9 processes.

Hello from rank: 4 of total 9 processes.

Hello from rank: 8 of total 9 processes.

Analyzing MPI Example 1

 How many source and executable code(s)?
1 each

 How many WRITE(*,*) statement(s) in source code?
1

 How many CPUs we asked?
9

 How many outputs from the only one WRITE(*,*) ?
9

In fact, 9 copies of the executable are run on 9
CPUs, like 9 complete independent codes
running separately but simultaneously.

http://cac.queensu.ca 11

Process
Any set of instructions executed on a processor (CPU), in
sequential/serial manner.

Any serial code run is a process. Any section of a serial code run
is also a process, but the sections are run one after another.

In MPI, a process usually means a full copy of the code being
run, and many processes can be working at the same time.

When we submit an MPI job with the command

mpirun –np N ./a.out

we are asking N processes to run a copy of the code each. Then
the operating system allocates CPUs for all processes. MPI can
not allocate CPUs directly.

http://cac.queensu.ca 12

A calculation job

http://cac.queensu.ca 13

Serial Code MPI Code

Process

CPU

P

C

P P PP ……

C C C……

User

System

Number of Processes

For efficiency, always choose the number of processes
smaller than the number of available CPUs. This
ensures that every process can get one CPU
exclusively, i.e. is executed on a dedicated processor.

http://cac.queensu.ca 14

The first basic feature of MPI

An MPI code is usually run by a group of processes
simultaneously.

Each process executes the code serially by iteself and
independently on any other process, in principle.

http://cac.queensu.ca 15

“Ranks” for each process in MPI
0

1

2

…

Number of Processes -1

http://cac.queensu.ca 16

as each process identify itself with a unique number and

thus performs some unique tasks.

MPI_COMM_RANK(…,RANK_or_MYID,…)

MPI_COMM_SIZE(…,Total_Number_of_Processes,…)

The RANK Numbers Outputted from Example 1

http://cac.queensu.ca 17

Hello from rank: 0 of total 9 processes.

Hello from rank: 1 of total 9 processes.

Hello from rank: 2 of total 9 processes.

Hello from rank: 3 of total 9 processes.

Hello from rank: 5 of total 9 processes.

Hello from rank: 6 of total 9 processes.

Hello from rank: 7 of total 9 processes.

Hello from rank: 4 of total 9 processes.

Hello from rank: 8 of total 9 processes.

The second basic feature of MPI

http://cac.queensu.ca 18

" Processes can identify themselves with the rank

numbers and know all co-workers accurately.

The Output from Example 1

http://cac.queensu.ca 19

Hello from rank: 0 of total 9 processes.

Hello from rank: 1 of total 9 processes.

Hello from rank: 2 of total 9 processes.

Hello from rank: 3 of total 9 processes.

Hello from rank: 5 of total 9 processes.

Hello from rank: 6 of total 9 processes.

Hello from rank: 7 of total 9 processes.

Hello from rank: 4 of total 9 processes.

Hello from rank: 8 of total 9 processes.

Lower rank does

not imply earlier

execution

The third basic feature of MPI

http://cac.queensu.ca 20

Any process always proceeds ahead immediately

and run as quickly as possible.

No execution order among processes is reserved by

default. None of the processes has a higher priority.

If such an order is really needed at certain points, it

can be achieved by calling some MPI routines

intentionally.

Analyzing MPI Example 1 Again
How many source codes and executables?

1
How many times to declare the “MYID” variable

in the code?
1

How many different values of the “MYID” variable outputted?
9 from 9 processes

http://cac.queensu.ca 21

In fact: each process has its own independent
copy of the “MYID” in its own memory space, i.e.
memory is distributed.

Not in a one-car family, father drives work,
mother shopping, son hockey , then daughter
volleyball in sequence. But everyone has his/her
own car, so a four-car family.

Analyzing MPI Example 1 Again

Although these “MYID” variables are named and
referred to as the same way inside their own
processes respectively, like the “first sons” but in
different families, they are absolutely different
individuals.

http://cac.queensu.ca 22

Shared vs Distributed memory
 Parallel computation means many processes are

employed for computing at the same time on
many CPUs to speed up.

 Each process must use some memory as
working space.

 Then we are facing the choices of shared or
distributed memory.

http://cac.queensu.ca 23

 If the same memory space can be accessed
by some CPUs directly, it is shared;

otherwise, if each CPU can only access its
own exclusive memory space directly, the
memory is distributed.

http://cac.queensu.ca 24

Shared vs Distributed memory

Memory

CPUs

shared distributed

http://cac.queensu.ca 25

Shared vs Distributed memory

Shared vs Distributed memory
OpenMP can only work in physically shared
memory machines.

MPI can work anywhere.

When MPI runs on physically shared-memory
machines, the memory is used as distributed.

http://cac.queensu.ca 26

Shared vs Distributed memory

Repeatedly in one word, from MPI point of view, the
memory is always distributed.

From OpenMP point of view, everything in MPI is
private.

http://cac.queensu.ca 27

The fourth basic feature of MPI
Whenever a process sees a variable or an array declaration , it
allocates memory accordingly to have a copy of it, but in its own
distributed memory space. Dynamically allocated ones the same.

Then different processes have completely different pieces of
physical memory for the variable/array, then can store the same or
different values there independently.

Each process can only access its own copy of them directly.

The only way to get data from any other processes is MPI
communications, except using external files. MPI is designed for
such a purpose effectively and reliably.

http://cac.queensu.ca 28

http://cac.queensu.ca 29

MPI Example 1 in Fortran
PROGRAM EXAMPLE01

USE MPI

INTEGER MYID, TOTPS, IERR

CALL MPI_INIT(IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYID, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, TOTPS, IERR)

WRITE(*,*)"Hello from rank:",MYID," of total", &

TOTPS, " processes."

CALL MPI_FINALIZE(IERR)

END

http://cac.queensu.ca 30

Example 1 in Fortran 90

PROGRAM EXAMPLE01

USE BASIC_MPI

CALL INITIALIZE_MPI()

CALL DEMO01()

CALL MPI_FINALIZE(IERR)

STOP

END PROGRAM EXAMPLE01

Later, we will

work here

demo.files/f01.f90.bwp

http://cac.queensu.ca 31

MPI Example 1 in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char* argv[])

{ int myid, totps;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_Comm_size(MPI_COMM_WORLD, &totps);

printf (“Hi from rank: %d of %d processes.\n",

myid, totps);

MPI_Finalize();

}

http://cac.queensu.ca 32

Restructured MPI Example 1 in C

void Demo01();

int main(int argc, char*argv[])

{

initialmpi(&argc, &argv);

Demo01();

MPI_Finalize();

}

Later, we will

work here

demo.files/c01n.bwp

http://cac.queensu.ca 33

MPI Example 1 in C++
#include <mpi.h>

#include <stdio.h>

int main()

{ MPI::Intracomm commall = MPI::COMM_WORLD;

MPI::Init();

int myid = commall.Get_rank();

int totps = commall.Get_size();

printf (“Hi from rank: %d of %d processes.\n",

myid, totps);

MPI::Finalize();

}

http://cac.queensu.ca 34

Restructured MPI Example 1 in C++

void Demo01();

int main()

{

initializempi();

Demo01();

MPI::Finalize();

}

Later, we will

work here

demo.files/cpp01n.bwp

MPI Example 2

http://cac.queensu.ca 35

m

is
m

i






210

0

These square root computational sub-tasks
will be distributed among all processes.

http://cac.queensu.ca 36

MPI Example 2

PROGRAM EXAMPLE02

USE BASIC_MPI

CALL INITIALIZE_MPI()

CALL DEMO02()

CALL MPI_FINALIZE(IERR)

STOP

END PROGRAM EXAMPLE02

demo.files/f02.f90.bwp
demo.files/c02.c.bwp
lab/mpi/cpp02/cpp02.cpp

Running Example 2
 $ mpif90 f02.f90

 $ mpirun –np 3 ./a.out

http://cac.queensu.ca 37

How many terms?

24

RANK: 0 MYS= 28.242821379338707 M: 24

RANK: 2 MYS= 26.928063945678374 M: 24

RANK: 1 MYS= 25.462894950061063 M: 24

Total sum: 80.63378027507815

Lab work # 2
 Go to your account in CAC

 cd mpi

 cd F90 (C, CPP)

 cd f02 (c02, cpp02)

 cat f02.f90 (c02.c, cpp02.cpp)

 mpif90 f02.f90 (for FORTRAN) or

 mpicc c02.c (for c)

 mpicxx cpp02.cpp (for C++)

 mpirun –np 3 ./a.out

 time mpirun –np 3 ./a.out

 echo 567

 echo 24 | time mpirun –np 3 ./a.out

 echo 2000000000 | time mpirun –np 1 ./a.out

 echo 2000000000 | time mpirun –np 4 ./a.out

http://cac.queensu.ca 38

Example 2 Shows
 Processes can communicate via MPI routines;

 The work load can be distributed among processes
(by using rank and size numbers);

 The final results can be collected from the processes
via MPI routines;

 MPI routines MPI_BCAST & MPI_REDUCE are
powerful ones for communications.

http://cac.queensu.ca 39

The fifth basic feature of MPI

A usual code can be parallelized.

http://cac.queensu.ca 40

Parallelizability
 For a given computational task split into smaller ones, only

if there is no data dependency among the sub-tasks, as in
Example 2, the sub-tasks can be completed in parallel.

 Data dependency makes it impossible.

 A non-parallelizable example is solving an equation
iteratively. Iteration steps cannot be parallelized due to data
dependency. However it may still be possible to parallelize
each step internally.

 In some seeming non-parallelizable cases, new parallel
algorithm are possible. These are real challenges.

 Parallel libraries for many typical mathematical processing
are available, then should be used.

http://cac.queensu.ca 41

Speedup and Scaling

http://cac.queensu.ca 42

" Speedup is the ratio between serial and parallel

execution times:

" If the speedup is equal to the number of processors

in the parallel case, the program is said to scale

linearly.

" In most (but not all) cases, the speedup will be

smaller then the number of processors (sub-linear

scaling).

pTTS /1

Amdahl's Law

http://cac.queensu.ca 43

Amdahl's Law: as the speedup

even with an infinite number of processors, the

speedup cannot exceed the above limit, where F

is the non-parallelized fraction.

,
1

/ FPTT

TT
S

parparnon

parparnon

P 









Worse for Speedup

http://cac.queensu.ca 44

" In shared memory parallelism, the more threads

used, the more chance for memory conflicts.

" In MPI, the more processes employed, the more

significant time for communication (overhead).

Beyond a certain number of processors,

performance becomes worse.

A brief History

http://cac.queensu.ca 45

 Standardization started in 1992 on a workshop on

message passing in distributed-memory systems.

 A draft version was presented in late 1993 on a

super-computing conference.

 Version 1.0 was released in the summer of 1994.

 Version 2.0 was released in June 1997.

 Version 3.1 was released in June 2015.

Why MPI?

http://cac.queensu.ca 46

 Portability: MPI runs on almost any hardware and OS.

There are public-domain versions of it (MPICH,

OPENMPI) available for any machine.

 Many parallel libraries in MPI developed already.

 Ease of Use: The MPI-1 standard includes about 120

functions, but with about 15 of them, well-working

programs can be produced. Usually only private data are

used and communications are explicitly managed.

 Compatibility: works with C and F77, and by extension

with C++ and F90. Usage does not deviate too much from

older systems, such as PVM.

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 47

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 48

http://cac.queensu.ca 49

MPI Header Files

 USE MPI Fortran

 #include <mpi.h> C/C++

Naming Conventions

http://cac.queensu.ca 50

In FORTRAN and C: MPI_*

In C++: MPI::*

Users are suggested not to use this form of names to

avoid conflicts.

MPI_INIT

http://cac.queensu.ca 51

MPI_INIT(IERR)

int MPI_Init(int *argc, char ***argv)

void MPI::Init(int& argc, char**& argv)

Initializes MPI. Must be called once, and only once

before any other MPI routine is called. IERR or the

return value is an integer error code. NULL is a

valid argument for argc and argv. In C++, the

function can be called with no argument.

MPI_FINALIZE

http://cac.queensu.ca 52

MPI_FINALIZE(IERR)

int MPI_Finalize(void)

void MPI::Finalize()

Finalizes (closes) MPI. Must be called once and

only once after the last MPI call. IERR or the return

value is an integer error code. In C++ the function is

called without arguments.

Communicator

http://cac.queensu.ca 53

A communicator is a group of processes that

share a common communication system, so the

processes inside can communicate.

Communicators must be specified in all MPI

communications. Here communicators means

intracommunicators. We will not talk about

intercommunicators.

Communicator

http://cac.queensu.ca 54

A communicator can be split into smaller

mutual-exclusive ones. A process may belong

to many communicators simultaneously. Rank

numbers (unique integers) are communicator

specific, and always run from 0 contiguously in

the positive direction inside a given

communicator .

Communicator

http://cac.queensu.ca 55

The default communicator

MPI_COMM_WORLD, includes all processes

initiated. Usually it is enough for most

communications.

MPI_COMM_SIZE

http://cac.queensu.ca 56

MPI_COMM_SIZE(COMM, ISIZE, IERR)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI::Comm::Get_size() const

Returns the size of a communicator COMM as an

integer (ISIZE, size, return value). This routine is

used to determine the number of available processes

in a communicator. Returns an error code (IERR,

return value).

MPI_COMM_RANK

http://cac.queensu.ca 57

MPI_COMM_RANK(COMM, IRANK, IERR)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI::Comm::Get_rank() const

Returns the rank (internal number) as IRANK, rank

or return value of the current process. It is used to

identify the process that calls it. The rank ranges

from 0 to N-1 if N is the number of processes.

COMM or comm denotes the communicator, and

IERR is the usual integer error code.

Size and Rank

http://cac.queensu.ca 58

communicator A

3

0

5

6

2

3

21

4

0

4

1

size = 7

communicator B
size = 5

MPI_COMM_SPLIT

MPI_COMM_SPLIT(COMM,COLOR,KEY,NEWCOMM,IERR)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const

This routine splits a communicator COMM (comm) into
mutually exclusive communicators NEWCOMM (newcomm).
Processes that have the same integer COLOR (color) will belong
to the same new communicator. The integers KEY (key) are used
to determine the order of ranks inside each new communicator.

http://cac.queensu.ca 59

MPI_COMM_SPLIT

http://cac.queensu.ca 60

Old Communicator

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 61

MPI Predefined Data Types

http://cac.queensu.ca 62

MPI provides its own data types. Most of them are

compatible with Fortran, C, and C++ data types.

Others provides more flexibility. For any data

communication, data types must be specified in

the form of MPI data types.

MPI Predefined Data Types for FORTRAN

http://cac.queensu.ca 63

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE --

MPI_PACKED --

MPI_CHAR signed char

MPI_SIGNED_CHAR signed char

MPI_SHORT signed short

MPI_INT signed int

MPI_LONG signed long

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t (MPI-2)

MPI_BYTE --

MPI_PACKED --

http://cac.queensu.ca 64

Examples of MPI Predefined Data Types for C

MPI::CHAR signed char

MPI::SIGNED_CHAR signed char

MPI::SHORT signed short

MPI::INT signed int

MPI::LONG signed long

MPI::UNSIGNED_CHAR unsigned char

MPI::UNSIGNED_SHORT unsigned short

MPI::UNSIGNED unsigned int

MPI::UNSIGNED_LONG unsigned long

MPI::FLOAT float

MPI::DOUBLE double

MPI::LONG_DOUBLE long double

MPI::COMPLEX complex<float>

MPI::DOUBLE_COMPLEX complex<double>

MPI::LONG_DOUBLE_COMPLEX complex<long double>

http://cac.queensu.ca 65

Examples of MPI Predefined Data Types for C++

MPI::WCHAR wchar_t

MPI::BOOL bool

MPI::INTEGER (FORTRAN)

MPI::REAL (FORTRAN)

MPI::DOUBLE_PRECISION (FORTRAN)

MPI::LOGICAL (FORTRAN)

MPI::CHARACTER (FORTRAN)

MPI::F_COMPLEX (FORTRAN)

MPI::F_DOUBLE_COMPLEX (FORTRAN)

MPI::BYTE --

MPI::PACKED --

http://cac.queensu.ca 66

Other MPI Predefined Data Types for C++

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 67

Point-To-Point Communication

http://cac.queensu.ca 68

Point-To-Point Communication, the basic

form of communication, is done between

two processes. One SENDs data and the

other RECEIVEs the data. The SENDing

needs to know the target (process) to

send the data, the RECEIVEing may

expect a fixed source (process) or be

open to any source for data coming from.

Point-To-Point Communication

http://cac.queensu.ca 69

Process 1

Process 2
Process i

Process j

send

receive

Send and Receive Buffers

http://cac.queensu.ca 70

Variables/arrays to be sent or to be used to

receive data in communications are called

send or receive buffers. They can be any

defined data types.

Blocking/Non-blocking Communications

http://cac.queensu.ca 71

Blocking means that a call to a communication routine

returns only when it is safe to use/re-use the buffer.

Non-blocking means that the communication operation

has only be initiated when the call returns, not guaranteed

finished. Only when they are confirmed finished by calling

checking MPI routines, it is safe to use/re-use the buffer.

Then so-called Request type objects are used to label

individual non-blocking communications for this purpose.

MPI_SEND

http://cac.queensu.ca 72

MPI_SEND(BUF, ICOUNT, TYPE, IDEST, ITAG, COMM, IERR)

int MPI_Send(void* buf, int count, MPI_Datatype type, int dest, int tag,

MPI_Comm comm)

void MPI::Comm::Send(const void* buf, int count,

const MPI::Datatype& type, int dest, int tag) const

Sends ICOUNT (count) successive data entries of type TYPE

(type) in buffer array BUF (buf) from the calling process to the

process with rank IDEST (dest). The integer ITAG (tag) is used

to identify this message. Valid values for tags are 0, 1, 2, …,

UB>=32767. COMM (comm) is the communicator, IERROR

the usual error code. This communication is blocking.

(the generic name)

MPI_RECV

http://cac.queensu.ca 73

MPI_RECV(BUF,ICOUNT,TYPE,ISOURCE,ITAG,COMM,STATUS,IERR)

int MPI_Recv(void* buf, int count, MPI_Datatype type, int source, int tag, MPI_Comm

comm, MPI_Status *status)

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& type,

int source, int tag) const

Receives a message identified with ITAG (tag), ISOURCE (source),

and COMM (comm). The received data are placed into buffer array BUF

(buf) of ICOUNT (count) successive entries of type TYPE (type).

STATUS (status) is an integer array (of MPI_STATUS_SIZE elements

in FORTRAN) with status information about the message received (e.g.

its actual length and source). The communication is blocking. It is often

used together with MPI_SEND for communications.

About MPI_RECV
 Note that MPI_RECV can accept messages from an
unspecified source. For this, the wildcard value
MPI_ANY_SOURCE (MPI::ANY_SOURCE in C++) is
provided.

 If a distinction by tag is not required, the constant
MPI_ANY_TAG (MPI::ANY_TAG in C++) can be used.

 Unspecified sources and tags can only be used by receives,
not by sends.

http://cac.queensu.ca 74

MPI_Send/MPI_Recv

http://cac.queensu.ca 75

send buffer

Real A(100)
receive buffer

Real B(100)

Process 1 Process 2

MPI_SEND(A, 100, MPI_REAL, 2, 576,

MYCOM, IERR)

MPI_RECV(B, 100, MPI_REAL, 1, 576,

MYCOM,ISTAT, IERR)

MYCOM

MPI

MPI_ISEND

http://cac.queensu.ca 76

MPI_ISEND(BUF, ICOUNT, TYPE, IDEST, ITAG, COMM, IREQ,IERR)

int MPI_ISend(void* buf, int count, MPI_Datatype type, int dest, int tag,

MPI_Comm comm, MPI_Request *req)

MPI::Request MPI::Comm::ISend(const void* buf, int count,

const MPI::Datatype& type, int dest, int tag) const

Nearly the same as MPI_SEND, but non-blocking. Calls to

MPI_WAIT or MPI_TEST are usually needed for later checks if the

communication is completed. For this purpose, the request integer

IREQ, or object req is used.

MPI_IRECV

http://cac.queensu.ca 77

MPI_IRECV(BUF,ICOUNT,TYPE,ISOURCE,ITAG,COMM,IREQ,IERR)

int MPI_IRecv(void* buf, int count, MPI_Datatype type, int source, int tag,

MPI_Comm comm, MPI_Request request)

MPI::Request MPI::Comm::IRecv(void* buf, int count,

const MPI::Datatype& type, int source, int tag) const

Nearly the same as MPI_RECV, but non-blocking. MPI_WAIT or

MPI_TEST is usually needed to check for completion. For this

purpose the integer IREQ or the object req is used.

MPI_WAIT

http://cac.queensu.ca 78

MPI_WAIT(IREQ, ISTAT, IERR)

int MPI_Wait(MPI_Request *req, MPI_Status status)

void MPI::Request::Wait(MPI::Status& status)

Returns only when a non-blocking communication

labelled by the request IREQ or req is completed.

The request is usually returned by MPI_ISEND or

MPI_IRECV.

MPI_TEST

http://cac.queensu.ca 79

MPI_TEST(IREQ, FLAG, ISTAT, IERR)

int MPI_Test(MPI_Request *req, int *flag, MPI_Status status)

bool MPI::Request::Test(MPI::Status& status)

Returns the logical FLAG (flag) as true if the non-

blocking communication identified by IREQ (req) is

completed, and as false otherwise. Request IREQ

(req) is usually returned from MPI_ISEND or

MPI_IRECV.

Collective Communications

http://cac.queensu.ca 80

Some communications and other operations involve all

processes in a given communicator and are thus called

collective. Examples are Broadcast, Reduction and

Barrier. Collective Communications are often more

efficient and easier to program than the point-to-point

communications.

Collective communications are always blocking ones and

should be called by every process in the given

communicator.

The following routines are collective.

Collective Communication

http://cac.queensu.ca 81

Process 0

Process 2

Process 1

Process 3

Communicator

MPI_BARRIER

http://cac.queensu.ca 82

MPI_BARRIER(COMM, IERR)

int MPI_Barrier(MPI_Comm comm)

void MPI::Comm::Barrier() const=0

Blocks the process until all members of the

communicator COMM or comm have reached here.

This routine is used to synchronize all processes in a

communicator.

MPI_BCAST

http://cac.queensu.ca 83

MPI_BCAST(BUF,ICOUNT,TYPE,IROOT,COMM,IERR)

int MPI_Bcast(void* buf, int count, MPI_Datatype type,

int root, MPI_Comm comm)

void MPI::Comm::Bcast(void* buf, int count,

const MPI::Datatype& type, int root) const=0

"Broadcasts" BUF (buf) of ICOUNT (count) values

of type TYPE (type) from the process with rank

IROOT (root) to all other processes. MPI_BCAST is

used to disseminate information among all processes

in the communicator.

MPI_BCAST

http://cac.queensu.ca 84

Process 0

Process 1

MPI_BCAST(A,100,MPI_REAL,0,MYCOM,IERR)

MYCOM

buffer

Real A(100)

buffer

Real A(100) Process 2

Process 3

buffer

Real A(100)

buffer

Real A(100)

MPI_REDUCE

http://cac.queensu.ca 85

MPI_REDUCE(SBUF,RBUF,ICOUNT,TYPE,OP,IROOT,COMM,IERR)

int MPI_Reduce(void* sbuf, void* rbuf, int count, MPI_Datatype type,

MPI_Op op, int root, MPI_Comm comm)

void MPI::Comm::Reduce(const void* sbuf, void* rbuf, int count, const

MPI::Datatype& type, const MPI::Op& op, int root) const=0

MPI_REDUCE takes ICOUNT (count) data of type TYPE

(type) that are stored in SBUF (sbuf) on all processes in

COMM (comm) and reduces all the corresponding elements via

operation OP (op), then stores the result into the corresponding

element of RBUF (rbuf) on the process with rank IROOT

(root). Possible operations are MPI_MAX (maximum),

MPI_MIN (minimum), MPI_SUM (sum), MPI_PROD

(product), etc.

MPI_REDUCE

http://cac.queensu.ca 86

MPI_REDUCE(A,B,100,MPI_REAL,MPI_SUM,0,MYCOM,IERR)

process 0

Real A(100)

process 1

Real A(100)

process 2

Real A(100)

process 3

Real A(100)

Real B(100)

+

process 0

MYCOM

MPI_SCATTERV

http://cac.queensu.ca 87

MPI_SCATTERV(SBUF,IS,DISP,TS,RBUF,IR,TR, IROOT,COMM,IERR)

MPI_Scatterv(void* sbuf, int *is, int *disp, MPI_Datatype ts, void* rbuf, int ir,

MPI_Datatpe tr, int root, MPI_Comm comm)

void MPI::Comm::Scatterv(const void* sbuf, const int is[], const int disp[],

const MPI::Datatype& ts, void* rbuf, int ir, const MPI::Datatype& tr, int root)

const=0

To scatter SBUF (sbuf) of type TS (ts) in rank IROOT (root) to all

processes in the COMM (comm).The integer arrays DISP (disp)

and IS (is) are used to specify from which entry and the total number

of entries to be scattered to each process, in the order of ranks. For a

specific calling process, the received data will be placed into RBUF

(rbuf) of integer IR (ir) entries of type TR (tr) .

MPI_SCATTERV

http://cac.queensu.ca 88

process 3

process 2 process 0

process 1

REAL B(IR)

REAL B(IR)

REAL B(IR)

REAL B(IR)

REAL A()

MPI_SCATTERV(A,IS,DISP,MPI_REAL,B,IR,

MPI_REAL,0,MYCOM,IERR)

process 0

(DISP)

MPI_GATHERV

http://cac.queensu.ca 89

MPI_GATHERV(SBUF,IS,TS,RBUF,IR,DISP,TR,IROOT,COMM,IERR)

MPI_Gatherv(void* sbuf, int is, MPI_Datatype ts, void* rbuf, int *ir,

int *disp, MPI_Datatpe tr, int root, MPI_Comm comm)

void MPI::Comm::Gatherv(const void* sbuf, int is, const MPI::Datatype& ts,

void* rbuf, const int ir[], const int disp[], const MPI::Datatype& tr, int root)

const=0

To gather SBUF (sbuf) of integer IS (is) entries of type TS

(ts) from a specific calling process. These data in all

processes of the COMM (comm) will be gathered and

placed into RBUF (rbuf) of type TR (tr) in rank IROOT

(root). The integer arrays DISP (disp) and IR (ir) are used to

specify from which entry and the total number of entries to

be placed into RBUF (rbuf), in the order of ranks for

elements.

MPI_GATHERV

http://cac.queensu.ca 90

process 3

process2 process 0

process 1

REAL A(IS)

REAL A(IS)

REAL A(IS)

REAL A(IS)

REAL B()

MPI_GATHERV(A,IS,MPI_REAL,B,IR,DISP,MPI_REAL,0,MYCOM,IERR)

process 0

(DISP)

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 91

User-Defined Data Types
 Users often define new data types based on

predefined ones in their code (Fortran 90 and
C/C++), and like to transfer them with MPI.

 However MPI never reads the code, then knows
nothing about such User-Defined Data Types
(UDDT).

 Users should inform MPI the details by redefining
them through calling MPI routines. Then they are
called MPI UDDT or still UDDT for short.

http://cac.queensu.ca 92

MPI UDDT
As a matter of fact, MPI UDDTs are not simply a
redefinition of the regular UDDTs, but much
wider/deeper, then much more powerful.

MPI UDDTs can be used to send or receive any
related and completely un-related data all
together in the whole local memory space.

This means data defined as of an MPI UDDT but
never defined in any regular UDDT in the normal
code can also be transferred together.

http://cac.queensu.ca 93

MPI UDDT

Four steps: to define, to commit, to use the
same way as predefined data types, and to
delete after used.

Committed MPI UDDTs can be used as
predefined types in further MPI UDDT
definitions.

http://cac.queensu.ca 94

MPI_GET_ADDRESS

http://cac.queensu.ca 95

MPI_GET_ADDRESS(DATAPOINT,ADDRESS,IERROR)

int MPI_Get_address(void *datapoint, MPI_Aint *address)

MPI::Aint MPI::Get_address (void* datapoint)

Finds the absolute byte ADDRESS of a “memory

location”, i.e., a DATAPOINT. This call is

commonly used to compute the true offset of a data

point inside a structure, e.g. to load the IDISP array

in a MPI_TYPE_CREATE_STRUCT call.

MPI_TYPE_CREATE_RESIZED

http://cac.queensu.ca 96

MPI_TYPE_CREATE_RESIZED(TOLD, LOW, EXT, TNEW, IERROR)

MPI_Type_create_resized(MPI_Datatype told, MPI_Aint low, MPI_Aint ext,

MPI_Datatype *tnew)

MPI::Datatype MPI::Datatype::Resized (const MPI::Aint low, const MPI::Aint

ext) const

Creates a new data type TNEW identical to a pre-

existing one TOLD but with reset boundaries. The

lower boundary is set to LOW and the upper boundary

is set to LOW+EXT. Commonly used to adapt an

MPI_DATATYPE in size to an existing datatype in

case of padding.

MPI_TYPE_CREATE_RESIZED

http://cac.queensu.ca 97

MPI_TYPE_CREATE_RESIZED(TOLD,0,16,TNEW,IERROR)

TOLD

Real Real CharReal

TNEW

Real Real CharReal

0 13

0 16

MPI_TYPE_CREATE_STRUCT

http://cac.queensu.ca 98

MPI_TYPE_CREATE_STRUCT(ICOUNT, LBLOCK, IDISP, TYPES, TNEW,

IERROR)

MPI_Type_create_struct(int icount, int *lblock, MPI_Aint *idisp,

MPI_Datatype *types, MPI_Datatype *tnew)

static MPI::Datatype MPI::Datatype::Create_struct (int icount,

const int lblock[], const MPI::Aint idisp[], const MPI::Datatype types[])

Creates a new data type TNEW by concatenating

ICOUNT blocks of changing types specified in array

TYPES with lengths specified in array LBLOCK.

Among each other, these blocks may not be contiguous

in memory. The onsets are specified in array IDISP.

MPI_TYPE_CREATE_STRUCT

http://cac.queensu.ca 99

MPI_TYPE_CREATE_STRUCT(3,LBLOCK,IDISP,TYPES,TNEW,IERROR)

ICOUNT=3

IBLOCK=(1,2,1) IDISP=(0,8,20)

TNEW

TYPES=(MPI_INTEGER,

MPI_REAL,MPI_CHARACTER)

Int Real Real Char

MPI_TYPE_COMMIT

http://cac.queensu.ca 100

MPI_TYPE_COMMIT(TYPE,IERROR)

int MPI_Type_Commit(MPI_Datatype type)

void MPI::Datatype::Commit ()

Commits a new data type TYPE and makes it ready

for use. Must be called before first use.

MPI_TYPE_FREE

http://cac.queensu.ca 101

MPI_TYPE_FREE(TYPE, IERROR)

MPI_Type_free(MPI_Datatype type)

void MPI::Datatype::Free ()

Releases the objects associated with a data type

TYPE. Should be called when TYPE is not used

anymore. Datatypes that depend on the freed one are

not affected.

A Simple Example

 In Fortran

 In C

 In C++

http://cac.queensu.ca 102

demo.files/uddtt4.f90.BWP
demo.files/uddtt4.c.BWP
demo.files/uddtt4.cpp.BWP

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 103

Compiling and execution in our cluster

http://cac.queensu.ca 104

To compile :

mpif90 files.f90

mpicc files.c

mpicxx files.cpp

To run :

mpirun –np N executable

where N is the number of processes.

SLURM

http://cac.queensu.ca 105

In CAC (HPCVL), all production jobs must

be submitted to SLURM, then to cluster.
One way is as before: salloc …
The other way is as:
1, a script file should be edited, e.g. ajob

2, submitting it: sbatch ajob

3, monitoring: squeue –u THE_USER

4, submitted jobs can be deleted: scancel job#

https://cac.queensu.ca/wiki/index.php/SLURM

#!/bin/bash

#SBATCH --job-name=My_MPI_job

#SBATCH --mail-type=ALL

#SBATCH --mail-user=joe.user@email.ca
#SBATCH --output=STD.out

#SBATCH --error=STD.err

#SBATCH --nodes=1

#SBATCH --ntasks=8

#SBATCH --cpus-per-task=1

#SBATCH --time=0-0:30:00

#SBATCH --mem=20GB

mpirun -np $SLURM_NTASKS ./mpi_program

http://cac.queensu.ca 106

Script example for SLURM

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 107

Parallel Principles
 Try to parallel heavy computations as much as

possible.

 Distribute sub-tasks among processes as evenly as
possible, to reduce waiting time.

 Reduce or combine communications as much as
possible, as eventually they become the performance
bottleneck.

 If possible, repeat some quick calculations across
processes to avoid communications for them.

 Parallelize out-most loop rather than inner ones to
reduce communications, if nested loops parallelizable.

http://cac.queensu.ca 108

About MPI I/O
 In MPI-1, each process handles I/O completely

separately, therefore, processes will NOT cooperate.
Results are unpredictable when multiple processes
write into one same file.

 Simple solution: One process does all I/O,
all others communicate with it for necessary
information (see examples).

 In MPI-2, parallel I/O is available (beyond the scope
of this course, and not necessary in most cases).

http://cac.queensu.ca 109

Steps for parallelizing a serial code

 Make sure the serial code in a reasonable status.

 Introduce MPI into the code (header file, initializing, rank, size,
and finalizing).

 Properly handle I/Os (let one process read in all input data,
broadcast them immediately, and do all output operations).

 Profile the code to determine which sections should be
parallelized.

 Choose parallel method and parallelize the above sections (new
algorithm might be needed) .

 Furthermore, distribute big arrays to save memory if possible.

 Repeat the above last three steps till satisfaction in performance
and memory requirement.

http://cac.queensu.ca 110

A simple tip

http://cac.queensu.ca 111

In order to parallelize the following many

nested very limited loops:

loop1 from 1 to n1

loop2 from 1 to n2

…

loopm from 1 to nm

independent_jobs(loop_indexed)

end loopm

…

end loop2

end loop1

A simple tip

http://cac.queensu.ca 112

Save loop indexes to array MMM (as an example):

count=0

loop1 from 1 to n1

loop2 from 1 to n2

…

loopm from 1 to nm

count=count+1

save_all_loop_indexes_to_MMM(count)

end loopm

…

end loop2

end loop1

A simple tip

http://cac.queensu.ca 113

Then the same computation can be done with

the following one loop, which should be

parallelized more efficiently:

loop from 1 to count

the_independent_jobs(MMM(loop))

end loop

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 114

http://cac.queensu.ca 115

Arrays in memory

Memory is the place we place our data

In serial code, we may completely forget any details
about how an array is managed in memory.

However, in MPI code, there are a few respects about
arrays in memory which we should pay attention to,
either for running the code much faster or even for
ensuring the code running correctly.

http://cac.queensu.ca 116

A mathematical array

http://cac.queensu.ca 117

From now on, let us consider the following mathematical
expression of an array of M rows and N columns (M-by-
N, with both row and column indexes starting from 1):

where the elements are

A(i,j) with i = 1,2,…, M and j = 1, 2, …, N.



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

Programming on an array

http://cac.queensu.ca 118

The array can be stored in any way,

as long as accessed accordingly.

The usual ways are

in FORTRAN in C/C++

or

based on further considerations.

REAL*8 :: FA(M,N)

…

FA(I,J)=A(I,J)

float ca[M][N];

…

ca[i][j]=A(i+1,j+1)

A =


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









REAL*8 :: FA(N,M)

…

FA(I,J)=A(J,I)

float ca[N][M];

…

ca[i][j]=A(j+1,i+1)

normal way

transposed way

Sequence in memory

http://cac.queensu.ca 119

The next element/data in memory of the element

is always

in FORTRAN in C/C++

if existing.

REAL*8 :: FA(M,N)

FA(I,J)

float ca[M][N];

ca[i][j]

FA(I+1,J) ca[i][j+1]

A sketch of a computer structure

http://cac.queensu.ca 120

CPU cache, faster main memory (RAM)

limited in size huge in size, slow

For a piece of code, accessing elements of an array

http://cac.queensu.ca 121

in FORTRAN in C/C++

is usually much slower in performance than:

DO I = 1, M

DO J = 1, N

FA(I,J) = …

…

END DO

END DO

for(i=0; i<M; i++){

for(j=0; j<N; j++){

ca[j][i] = … ;

…

}

}

For a piece of code, accessing elements of an array

http://cac.queensu.ca 122

in FORTRAN in C/C++

when the order of the I and J loops reversed, accessing
elements in memory sequence.

The reason is that memory has different levels with
different sizes and speeds. The data in consecutive
memory will automatically flow together in any case,
then more efficient if used in sequence immediately.

DO J = 1, N

DO I = 1, M

FA(I,J) = …

…

END DO

END DO

for(j=0; j<N; j++){

for(i=0; i<M; i++){

ca[j][i] = … ;

…

}

}

To send many-element data with MPI
You inform MPI the first element (e.g. an array element or
point), total number of elements to be sent, and the data
type.

Then, MPI will get the first element, the next element, the
next next element, …, till all the required number of
elements in memory based on the length of the data type,
then send them.

Then the data to be sent should be prepared in such a
sequence in memory.

http://cac.queensu.ca 123

http://cac.queensu.ca 124

FORTRAN (transposed) C/C++ (normal)



















16151413

1211109

8765

4321

A =

FA(I,J)=A(2,2)

FA(I+1,J)=A(2,3)

FA(I+2,J)=A(2,4)

ca[i][j]=A(2,2)

ca[i][j+1]=A(2,3)

ca[i][j+2]=A(2,4)

FA(I,J) ca[i][j]

to make sure the data to be sent in sequential memory

location and send from (if not using MPI UDDT)

To send the red elements of the array

To send the red elements of the array

http://cac.queensu.ca 125

FORTRAN (normal) C/C++ (transposed)



















16151413

1211109

8765

4321

A =

FA(I,J)=A(1,3)

FA(I+1,J)=A(2,3)

FA(I+2,J)=A(3,3)

ca[i][j]=A(1,3)

ca[i][j+1]=A(2,3)

ca[i][j+2]=A(3,3)

FA(I,J) ca[i][j]

to make sure the data to be sent in sequential memory

and send from (if not using MPI UDDT)

To choose normal or transposed ways
in array coding, we need to consider
how they will be transferred in MPI
routines. If never being transferred or
only broadcast as a whole in MPI, the
performance should be considered
when accessed by CPUs.

http://cac.queensu.ca 126

It is quite often that one-dimensional
arrays in C/C++ code are dynamically
allocated but employed as two-
dimensional mathematical arrays. In
such a case, we still have the choice of
normal and transposed ways to store
the two-dimensional array data.

http://cac.queensu.ca 127

Programming for an array

http://cac.queensu.ca 128

For M-row by N-column array in C/C++

Normal way Transposed way

A
float* ca;

ca = (float *) malloc(M*N*sizeof(float));

/* the above in C and the next in C++ */

ca = (float *) new float[M*N];

ca(i*N+j)=A(i+1,j+1) ca[i+j*M]=A(i+1,j+1)

A =


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









Memory is distributed across
processes in MPI

Under this big background, we further have a choice
to duplicate or distribute arrays in MPI code.

http://cac.queensu.ca 129

Array duplicated

http://cac.queensu.ca 130

A =


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









Array duplicated

http://cac.queensu.ca 131



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

Array duplicated

http://cac.queensu.ca 132



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

Array distributed

http://cac.queensu.ca 133



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

Array distributed

http://cac.queensu.ca 134



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

N)A(M,

...

N)A(2,

N)A(1,

...

...

...

...

A(M,2)

...

A(2,2)

A(1,2)

A(M,1)

...

A(2,1)

A(1,1)









































































Array distributed

http://cac.queensu.ca 135

A =

Array distributed

http://cac.queensu.ca 136



















N)A(M,A(M,2)A(M,1)

N)A(2, A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =

   N)A(2, ... A(2,2) A(2,1) N)A(1, ... A(1,2) A(1,1)    N)A(M, ... A(M,2) A(M,1)

Array distributed

http://cac.queensu.ca 137

A =

Round-robin distribution of two-
dimensional arrays

http://cac.queensu.ca 138

http://cac.queensu.ca 139

A two-dimensional 8X25 array

http://cac.queensu.ca 140

With block sizes of 2X4,
the array is split into 4X7 blocks

http://cac.queensu.ca 141

2D Grid of Processes

Suppose we have 2X3=6 processes with ranks 0,
1, 2, 3, 4, and 5. The table below shows the rank
and row and column numbers of the grid of
processors as

rank (row, column)

5(1,2)4(1,1)3(1,0)

2(0,2)1(0,1)0(0,0)

http://cac.queensu.ca 142

2D Cyclic Block Distribution
5(1,2)4(1,1)3(1,0)

2(0,2)1(0,1)0(0,0)

MPI_TYPE_CREATE_DARRAY(…)

http://cac.queensu.ca 143

Memory Allocation in F90

Since the size of a distributed array in a process
usually depends on the total number of processes
(determined at running time), it is better to allocate
the memory dynamically.

FORTRAN 90 also allows so by providing
ALLOCATE() statement. We suggest to use language
facilities rather than to call MPI routines to allocate
memories, then they will be working in both serial
and parallel versions.

http://cac.queensu.ca 144

The purpose of array distribution is

to save memory.

However it also makes some additional (complicated)
MPI communications necessary.

Since array distribution is not so straight-forward, it is
usually done at a later stage in coding an MPI parallel
code.

http://cac.queensu.ca 145

http://cac.queensu.ca 146

Examples of distributed arrays

MPI Example 3

http://cac.queensu.ca 147

File f03.f90 c03.c cpp03.cpp

Matrix C Matrix A
Matrix B

 

M
S

Z
(3

)

MSZ(2)MSZ(1) MSZ(1)

Rank 0

Rank 1

Rank 2

…

…

Rank last

Matrix A
Matrix B

M
S

Z
(2

)

MPI Example 3

http://cac.queensu.ca 148

Matrix A

Rank 0 reads values for matrix A & B, then broadcast

Rank 0 Rank 1 … … Rank last

Matrix A

Matrix A

Matrix A

Matrix A
Matrix A

BAC 

File f03.f90 c03.c cpp03.cpp

MPI Example 3

http://cac.queensu.ca 149

Rank 0 Rank 1 … Rank lastRank 0

MC 0

MPMP

0 0

MP

0

MP

MC

BAC 

To collect the final results into matrix C of Rank 0 with MPI_REDUCE

demo.files/f03.f90.BWP
demo.files/c03.c.BWP
demo.files/cpp03.cpp.BWP

MPI Example 4

http://cac.queensu.ca 150

File f04.f90 c04.c cpp04.cpp

Matrix

Memory for matrix A and C(P) in Example 3

Rank 0 Rank 1 … … Rank last

Matrix

Matrix
Matrix

Matrix

Matrix

BAC 

Memory for matrix A and C(P) in Example 4

MPI Example 4

http://cac.queensu.ca 151

Normally, neither MPI_BCAST nor

MPI_REDUCE can be used for

communications for distributed arrays.

Instead, Point to Point communications

will work.

File f04.f90 c04.c cpp04.cpp

MPI Example 4

http://cac.queensu.ca 152

Rank 0 Rank 1 … Rank lastRank 0

For assigning values to matrix A

ReadSendReadSendReadSend Read

BAC 

File f04.f90 c04.c cpp04.cpp

MPI Example 4

http://cac.queensu.ca 153

Rank 0 Rank 1 … Rank lastRank 0

To collect data for matrix C

BAC 

demo.files/f04.f90.BWP
demo.files/c04.c.BWP
demo.files/cpp04.cpp.BWP

MPI Example 5

http://cac.queensu.ca 154

File f05.f90 c05.c cpp05.cpp

Rank 0 Rank 1 … Rank lastRank 0

CALL MPI_SCATTERV

For assigning values to matrix A

BAC 

MPI Example 5

http://cac.queensu.ca 155

Rank 0 Rank 1 … Rank lastRank 0

CALL MPI_GATHERV

To collect data for matrix C

BAC 

demo.files/f05.f90.BWP
demo.files/c05.c.BWP
demo.files/cpp05.cpp.BWP

Comparison among
 Example : 3, 4, and 5
 Calculation job : same, same, same
 Parallelization: same, same, same
 Memory for matrixes A and C:

duplicated, distributed, distributed
, , full memory in one process

 Communication :
broadcast & reduce, P-to-P, scatter & gather

 Programming :
concise, tedious, compromised

 Suggestion : earlier try, later try, later try

http://cac.queensu.ca 156

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 157

Generic Model

 The big calculation task is consisted of some
independent smaller ones, which needs
approximately the same CPU time.

 Then the smaller subtasks are distributed to the
processes in the order of ranks and as evenly as
possible.

 Widely used, as in previous examples.

http://cac.queensu.ca 158

Master-slave parallel model

http://cac.queensu.ca 159

Jobs

Master-slave parallel model

http://cac.queensu.ca 160

Master

(Rank 0)

only

assigns

jobs to

Slaves.

Slaves (Other ranks):

(I am idle)

(Do this job)

demo.files/f21.f90.BWP
demo.files/c21.c.BWP
demo.files/cpp21.cpp.BWP

Two-layer parallel model

http://cac.queensu.ca 161

Total calculation job

Small

job 1

Small

job 2

Small

job n

group 1

of cpus

group 2

of cpus
group n

of cpus

No communication essentially

demo.files/c22.c.BWP
demo.files/cpp22.cpp.BWP
demo.files/f22.f90.BWP

Outlines
 Introduction
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 162

http://cac.queensu.ca 163

Double-layer Master-Slave Model

Double-layer master-slave model

http://cac.queensu.ca 164

A big cluster of independent nodes

memory distributed between nodes

http://cac.queensu.ca 165

Double-layer Master-Slave Model

Jobs

http://cac.queensu.ca 166

Double-layer Master-Slave Model

http://cac.queensu.ca 167

Job groups sent to nodes via

MPI master-slave model

Double-layer Master-Slave Model

http://cac.queensu.ca 168

http://cac.queensu.ca 169

Job groups sent to nodes via

MPI master-slave model

Double-layer Master-Slave ModelJobs in a group executed

in the node by threads via

an OpenMP all-slave model

http://cac.queensu.ca 170

http://cac.queensu.ca 171

Double-layer Master-Slave Model

CAC supplies the DMSM library

with source code for free.

Topics untouched
 Intercommunicators

 Data packing/unpacking

 Process topologies

 Dynamical process creation and management

 One-sided communications

 Parallel I/O

 Typical Parallelized Libraries with MPI

 Still many other functions in touched topics

http://cac.queensu.ca 172

References

http://cac.queensu.ca 173

http://www.mpi-forum.org

MPI – The Complete Reference

Volume 1, The MPI Core

Marc Snir, et al.

Volume 2, The MPI Extensions

William Gropp, et al.

http://www.mpi-forum.org/

Thank you very much for your attention!

http://cac.queensu.ca 174

