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MPI

 Message Passing Interface

 System of subroutines/functions for communication 
between processes and facilities for such purpose in 
Fortran (90), C, and C++.

 Used for parallel computing on any combination of  
computers/clusters.
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MPI Example 1 in Fortran
PROGRAM EXAMPLE01

USE MPI

INTEGER MYID,  TOTPS,  IERR

CALL MPI_INIT( IERR )

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYID, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, TOTPS, IERR)

WRITE(*,*)"Hello from rank:",MYID," of total", &  

TOTPS, " processes."

CALL MPI_FINALIZE(IERR)

END
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MPI Example 1 in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char* argv[])

{  int myid, totps;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_Comm_size(MPI_COMM_WORLD, &totps);

printf (“Hi from rank: %d of %d processes.\n",

myid, totps); 

MPI_Finalize();

}
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MPI Example 1 in C++
#include <mpi.h>

#include <stdio.h>

int main() 

{ MPI::Intracomm commall = MPI::COMM_WORLD;

MPI::Init();

int myid = commall.Get_rank();

int totps = commall.Get_size();

printf (“Hi from rank: %d of %d processes.\n",

myid, totps); 

MPI::Finalize();

}



Lab works
 Login to your  account in CAC (login.cac.queensu.ca)

 tar   -xvf /global/project/workshop/mpi-lesson.tar

 [your_acount@caclogin02 ~]$

 salloc --reservation summer-school   -A  teaching 
-n  4   --mem 8g

 salloc: Granted job allocation …

 [your_acount@cac034 ~]$

 Then you get 4 CPUs and 8GB memory to 

use exclusively for the lab today. 
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Lab work # 1
 cd      mpi

 cd      F90       (C,     CPP)

 cd      f01       (c01,   cpp01)

 cat     f01.f     (c01.c, cpp01.cpp)

 mpif90  f01.f     (for FORTRAN) or

 mpicc c01.c     (for c)       or

 mpicxx cpp01.cpp (for C++)

 mpirun –np  4    ./a.out
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Running Example 1
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$ mpif90  f01.f 

$ mpirun –np 9 ./a.out

Hello from rank: 0  of total  9  processes.

Hello from rank: 1  of total  9  processes.

Hello from rank: 2  of total  9  processes.

Hello from rank: 3  of total  9  processes.

Hello from rank: 5  of total  9  processes.

Hello from rank: 6  of total  9  processes.

Hello from rank: 7  of total  9  processes.

Hello from rank: 4  of total  9  processes.

Hello from rank: 8  of total  9  processes.



Analyzing MPI Example 1

 How many source and executable code(s)?
1 each

 How many WRITE(*,*) statement(s) in source code?
1

 How many CPUs  we asked?
9

 How many outputs from the only one WRITE(*,*) ?
9

In fact, 9 copies of the executable are run on 9
CPUs, like 9 complete independent codes 
running separately but simultaneously. 
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Process
Any set of instructions executed on a processor (CPU), in 
sequential/serial manner. 

Any serial code run is a process. Any section of a serial code run 
is also a process, but the sections are run one after another. 

In MPI, a process usually means a full copy of the code being 
run, and many processes can be working at the same time. 

When we submit an MPI job with the command

mpirun –np N ./a.out

we are asking N processes to run a copy of the code each. Then 
the operating system allocates CPUs for all processes. MPI can 
not allocate CPUs directly. 
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A calculation job
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Number of Processes

For efficiency, always choose the number of processes 
smaller than the number of  available CPUs. This 
ensures that every process can get one CPU
exclusively, i.e. is executed on a dedicated processor.
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The first basic feature of MPI

An MPI code is usually run by a group of processes 
simultaneously.

Each process executes the code serially by iteself and  
independently on any other process, in principle.
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“Ranks” for each process in MPI
0

1

2

…

Number of Processes -1
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as each process identify itself with a unique number and 

thus performs some unique tasks.

MPI_COMM_RANK(…,RANK_or_MYID,…)

MPI_COMM_SIZE(…,Total_Number_of_Processes,…)



The RANK Numbers Outputted from Example 1
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Hello from rank: 0 of total 9  processes.

Hello from rank: 1 of total 9  processes.

Hello from rank: 2 of total 9  processes.

Hello from rank: 3 of total 9  processes.

Hello from rank: 5 of total 9  processes.

Hello from rank: 6 of total 9  processes.

Hello from rank: 7 of total 9  processes.

Hello from rank: 4 of total 9  processes.

Hello from rank: 8 of total 9  processes.



The second basic feature of MPI
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" Processes can identify themselves with the rank 

numbers and know all co-workers accurately.



The Output from Example 1
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Hello from rank: 0  of total 9  processes.

Hello from rank: 1  of total 9  processes.

Hello from rank: 2  of total 9  processes.

Hello from rank: 3 of total 9  processes.

Hello from rank: 5 of total 9  processes.

Hello from rank: 6  of total 9  processes.

Hello from rank: 7  of total 9  processes.

Hello from rank: 4 of total 9  processes.

Hello from rank: 8  of total 9  processes.

Lower rank does 

not imply earlier 

execution



The third basic feature of MPI
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Any process always proceeds ahead immediately 

and run as quickly as possible.

No execution order among processes is reserved by 

default. None of the processes has a higher priority.

If such an order is really needed at certain points, it 

can be achieved by calling some MPI routines 

intentionally.



Analyzing MPI Example 1 Again
How many source codes and executables?

1
How many times to declare the “MYID” variable      

in the code?
1

How many different values of the “MYID” variable outputted?
9 from 9 processes
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In fact: each process has its own independent  
copy of the “MYID” in its own memory space, i.e. 
memory is distributed. 

Not in a one-car  family, father drives work, 
mother shopping, son hockey , then daughter  
volleyball in sequence. But everyone has his/her 
own car, so a four-car family.



Analyzing MPI Example 1 Again

Although these “MYID” variables are named and 
referred to as the same way inside their own 
processes respectively, like the “first sons” but in 
different families, they are absolutely different 
individuals. 
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Shared vs Distributed memory 
 Parallel computation means many processes are 

employed for computing at the same time on 
many CPUs to speed up.

 Each process must use some memory as 
working space.

 Then we are facing the choices of shared or 
distributed memory. 
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 If the same memory space can be accessed 
by some CPUs directly, it is shared; 

otherwise, if each CPU can only access its 
own exclusive memory space directly,  the 
memory is distributed.
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Shared vs Distributed memory 



Memory

CPUs

shared                        distributed
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Shared vs Distributed memory 



Shared vs Distributed memory 
OpenMP can only work in physically shared
memory machines.

MPI can work anywhere. 

When MPI runs on physically shared-memory
machines, the memory is used as distributed. 
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Shared vs Distributed memory  

Repeatedly in one word, from MPI point of view, the 
memory is always distributed.

From OpenMP point of view, everything in MPI is 
private. 
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The fourth basic feature of MPI
Whenever  a process sees a variable or an array declaration , it 
allocates memory accordingly to have a copy of it, but in its own 
distributed memory space.  Dynamically allocated ones the same. 

Then different processes have completely different pieces of 
physical memory for the variable/array, then can store the same or 
different values there independently.

Each process can only access its own copy of them directly.

The only way to get data from any other processes is MPI 
communications, except using external files. MPI is designed for 
such a purpose effectively and reliably.
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http://cac.queensu.ca 29

MPI Example 1 in Fortran
PROGRAM EXAMPLE01

USE MPI

INTEGER MYID,  TOTPS,  IERR

CALL MPI_INIT( IERR )

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYID, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, TOTPS, IERR)

WRITE(*,*)"Hello from rank:",MYID," of total", &  

TOTPS, " processes."

CALL MPI_FINALIZE(IERR)

END
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Example 1 in Fortran 90

PROGRAM EXAMPLE01

USE   BASIC_MPI

CALL  INITIALIZE_MPI()

CALL  DEMO01()

CALL  MPI_FINALIZE(IERR)

STOP

END PROGRAM EXAMPLE01

Later, we will 

work here

demo.files/f01.f90.bwp
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MPI Example 1 in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char* argv[])

{  int myid, totps;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_Comm_size(MPI_COMM_WORLD, &totps);

printf (“Hi from rank: %d of %d processes.\n",

myid, totps); 

MPI_Finalize();

}
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Restructured MPI Example 1 in C

void Demo01();

int main(int argc, char*argv[])

{  

initialmpi(&argc, &argv);

Demo01();

MPI_Finalize();

}

Later, we will 

work here

demo.files/c01n.bwp
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MPI Example 1 in C++
#include <mpi.h>

#include <stdio.h>

int main() 

{ MPI::Intracomm commall = MPI::COMM_WORLD;

MPI::Init();

int myid = commall.Get_rank();

int totps = commall.Get_size();

printf (“Hi from rank: %d of %d processes.\n",

myid, totps); 

MPI::Finalize();

}
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Restructured MPI Example 1 in C++

void Demo01(); 

int main()

{

initializempi();

Demo01();

MPI::Finalize();

}

Later, we will 

work here

demo.files/cpp01n.bwp


MPI Example 2
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These square root computational sub-tasks 
will be distributed among all processes.
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MPI Example 2

PROGRAM EXAMPLE02

USE   BASIC_MPI

CALL  INITIALIZE_MPI()

CALL  DEMO02()

CALL  MPI_FINALIZE(IERR)

STOP

END PROGRAM EXAMPLE02

demo.files/f02.f90.bwp
demo.files/c02.c.bwp
lab/mpi/cpp02/cpp02.cpp


Running Example 2
 $ mpif90 f02.f90

 $ mpirun –np 3 ./a.out
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How many terms?

24

RANK: 0  MYS= 28.242821379338707   M: 24

RANK: 2  MYS= 26.928063945678374   M: 24

RANK: 1  MYS= 25.462894950061063   M: 24

Total sum:            80.63378027507815



Lab work # 2
 Go to  your  account in CAC

 cd      mpi

 cd      F90       (C,   CPP)

 cd      f02       (c02, cpp02)

 cat     f02.f90   (c02.c, cpp02.cpp)

 mpif90  f02.f90   (for FORTRAN) or

 mpicc c02.c     (for c) 

 mpicxx cpp02.cpp (for C++)

 mpirun –np 3  ./a.out

 time mpirun –np 3 ./a.out

 echo 567

 echo 24 | time mpirun –np 3 ./a.out

 echo 2000000000 | time mpirun –np 1 ./a.out

 echo 2000000000 | time mpirun –np 4 ./a.out
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Example 2 Shows
 Processes can communicate via MPI routines;

 The work load can be distributed among processes 
(by using rank and size numbers);

 The final results can be collected from the processes 
via MPI routines;

 MPI routines MPI_BCAST & MPI_REDUCE are 
powerful ones for communications.
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The fifth basic feature of MPI

A usual code can be parallelized.
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Parallelizability
 For a given computational task split into smaller ones, only 

if there is no data  dependency among the sub-tasks, as in 
Example 2, the sub-tasks can be completed in parallel.

 Data dependency makes it impossible.

 A non-parallelizable example is solving an equation 
iteratively. Iteration steps cannot be parallelized due to data 
dependency. However it may still be possible to parallelize 
each step internally.

 In some seeming non-parallelizable cases, new parallel 
algorithm are possible. These are real challenges. 

 Parallel libraries for many typical mathematical processing 
are available, then should be used.
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Speedup and Scaling
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" Speedup is the ratio between serial and parallel 

execution times: 

" If the speedup is equal to the number of processors 

in the parallel case, the program is said to scale 

linearly.

" In most (but not all) cases, the speedup will be 

smaller then the number of processors (sub-linear 

scaling).

pTTS /1



Amdahl's Law
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Amdahl's Law: as the speedup

even with an infinite number of processors, the 

speedup cannot exceed the above limit, where F 

is the non-parallelized fraction.

,
1

/ FPTT
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Worse for Speedup 
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" In shared memory parallelism, the more threads 

used, the more chance for memory conflicts.

" In MPI, the more processes employed, the more 

significant time for communication (overhead). 

Beyond a certain number of processors, 

performance becomes worse.



A brief History
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 Standardization started in 1992 on a workshop on 

message passing in distributed-memory systems.

 A draft version was presented in late 1993 on a 

super-computing conference.

 Version 1.0 was released in the summer of 1994.

 Version 2.0 was released in June 1997. 

 Version 3.1 was released in June 2015. 



Why MPI?
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 Portability: MPI runs on almost any hardware and OS. 

There are public-domain versions of it (MPICH, 

OPENMPI) available for any machine.

 Many parallel libraries in MPI developed already.

 Ease of Use: The MPI-1 standard includes about 120 

functions, but with about 15 of them, well-working 

programs can be produced. Usually only private data are 

used and communications are explicitly managed.

 Compatibility: works with C and F77, and by extension 

with C++ and F90. Usage does not deviate too much from 

older systems, such as PVM.



Outlines
 Introduction 
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 47



Outlines
 Introduction 
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References

http://cac.queensu.ca 48



http://cac.queensu.ca 49

MPI Header Files

 USE MPI                                 Fortran

 #include   <mpi.h> C/C++



Naming Conventions
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In FORTRAN and C: MPI_*

In C++: MPI::*

Users are suggested not to use this form of names to 

avoid conflicts.



MPI_INIT
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MPI_INIT(IERR)

int MPI_Init(int *argc, char ***argv)

void MPI::Init(int& argc, char**& argv)

Initializes MPI. Must be called once, and only once 

before any other MPI routine is called. IERR or the 

return value is an integer error code. NULL is a 

valid argument for argc and argv. In C++, the 

function can be called with no argument. 



MPI_FINALIZE
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MPI_FINALIZE(IERR)

int MPI_Finalize(void)

void MPI::Finalize()

Finalizes (closes) MPI. Must be called once and 

only once after the last MPI call. IERR or the return 

value is an integer error code. In C++ the function is 

called without arguments.



Communicator
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A communicator is a group of processes that 

share a common communication system, so the 

processes inside can communicate. 

Communicators must be specified in all MPI 

communications. Here communicators means  

intracommunicators.  We will not talk about 

intercommunicators.



Communicator
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A communicator can be split into smaller 

mutual-exclusive ones. A process may belong 

to many communicators simultaneously. Rank 

numbers (unique integers) are communicator

specific, and always run from 0 contiguously in 

the positive direction inside a given 

communicator .



Communicator
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The default communicator 

MPI_COMM_WORLD, includes all processes 

initiated. Usually it is enough for most 

communications.



MPI_COMM_SIZE
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MPI_COMM_SIZE(COMM, ISIZE, IERR)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI::Comm::Get_size() const

Returns the size of a communicator COMM as an 

integer (ISIZE, size, return value). This routine is 

used to determine the number of available processes 

in a communicator. Returns an error code (IERR, 

return value).



MPI_COMM_RANK
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MPI_COMM_RANK(COMM, IRANK, IERR)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI::Comm::Get_rank() const

Returns the rank (internal number) as IRANK, rank 

or return value of the current process. It is used to 

identify the process that calls it. The rank ranges 

from 0 to N-1 if N is the number of processes. 

COMM or comm denotes the communicator, and 

IERR is the usual integer error code.



Size and Rank

http://cac.queensu.ca 58
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size = 5



MPI_COMM_SPLIT

MPI_COMM_SPLIT(COMM,COLOR,KEY,NEWCOMM,IERR)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const

This routine splits a communicator COMM (comm) into 
mutually exclusive communicators NEWCOMM (newcomm). 
Processes that have the same integer COLOR (color) will belong 
to the same new communicator. The integers KEY (key) are used 
to determine the order of ranks inside each new communicator.  
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MPI_COMM_SPLIT
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Old Communicator
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MPI Predefined Data Types
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MPI provides its own data types. Most of them are 

compatible with Fortran, C, and C++ data types. 

Others provides more flexibility. For any data 

communication, data types must be specified in 

the form of MPI data types.



MPI Predefined Data Types for FORTRAN
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MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE --

MPI_PACKED --



MPI_CHAR signed char

MPI_SIGNED_CHAR signed char

MPI_SHORT signed short 

MPI_INT signed int

MPI_LONG signed long 

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long 

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t (MPI-2)

MPI_BYTE --

MPI_PACKED --
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Examples of MPI Predefined Data Types for C



MPI::CHAR signed char

MPI::SIGNED_CHAR signed char

MPI::SHORT signed short 

MPI::INT signed int

MPI::LONG signed long

MPI::UNSIGNED_CHAR unsigned char

MPI::UNSIGNED_SHORT unsigned short 

MPI::UNSIGNED unsigned int

MPI::UNSIGNED_LONG unsigned long

MPI::FLOAT float

MPI::DOUBLE double

MPI::LONG_DOUBLE long double

MPI::COMPLEX complex<float>

MPI::DOUBLE_COMPLEX complex<double>

MPI::LONG_DOUBLE_COMPLEX complex<long double>
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Examples of MPI Predefined Data Types for C++



MPI::WCHAR wchar_t

MPI::BOOL bool

MPI::INTEGER (FORTRAN)

MPI::REAL (FORTRAN)

MPI::DOUBLE_PRECISION (FORTRAN)

MPI::LOGICAL (FORTRAN)

MPI::CHARACTER (FORTRAN)

MPI::F_COMPLEX (FORTRAN)

MPI::F_DOUBLE_COMPLEX (FORTRAN)

MPI::BYTE --

MPI::PACKED --
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Other MPI Predefined Data Types for C++
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Point-To-Point Communication
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Point-To-Point Communication, the basic 

form of communication, is done between 

two processes. One SENDs data and the 

other RECEIVEs the data. The SENDing

needs to know the target (process) to 

send the data, the RECEIVEing may 

expect a fixed source (process) or be 

open to any source for data coming from.



Point-To-Point Communication
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Process 1

Process 2
Process i

Process j

send

receive



Send and Receive Buffers
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Variables/arrays to be sent or to be used to 

receive data in  communications are called 

send or receive buffers. They can be any 

defined data types.



Blocking/Non-blocking Communications

http://cac.queensu.ca 71

Blocking means that a call to a communication routine 

returns only when it is safe to use/re-use the buffer. 

Non-blocking means that the communication operation 

has only be initiated when the call returns, not guaranteed 

finished. Only when they are confirmed finished by calling 

checking MPI routines, it is safe to use/re-use the buffer. 

Then so-called Request type objects are used to label 

individual non-blocking communications for this purpose.



MPI_SEND
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MPI_SEND(BUF, ICOUNT, TYPE, IDEST, ITAG, COMM, IERR)

int MPI_Send(void* buf, int count, MPI_Datatype type, int dest, int tag, 

MPI_Comm comm)

void MPI::Comm::Send(const void* buf, int count, 

const MPI::Datatype& type, int dest, int tag) const

Sends ICOUNT (count) successive data entries of type TYPE

(type) in buffer array BUF (buf) from the calling process to the 

process with rank IDEST (dest). The integer ITAG (tag) is used 

to identify this message. Valid values for tags are 0, 1, 2, …, 

UB>=32767. COMM (comm) is the communicator, IERROR

the usual error code. This communication is blocking.

(the generic name)



MPI_RECV
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MPI_RECV(BUF,ICOUNT,TYPE,ISOURCE,ITAG,COMM,STATUS,IERR)

int MPI_Recv(void* buf, int count, MPI_Datatype type, int source, int tag, MPI_Comm

comm, MPI_Status *status)

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& type, 

int source, int tag) const

Receives a message identified with ITAG (tag), ISOURCE (source), 

and COMM (comm). The received data are placed into  buffer array BUF

(buf) of ICOUNT (count) successive entries of type TYPE (type). 

STATUS (status) is an integer array (of MPI_STATUS_SIZE elements 

in FORTRAN) with status information about the message received (e.g. 

its actual length and source). The communication is blocking. It is often 

used  together with MPI_SEND for communications.



About MPI_RECV
 Note that MPI_RECV can accept messages from an 
unspecified source. For this, the wildcard value 
MPI_ANY_SOURCE (MPI::ANY_SOURCE in C++) is 
provided.

 If a distinction by tag is not required, the constant 
MPI_ANY_TAG (MPI::ANY_TAG in C++) can be used.

 Unspecified sources and tags can only be used by receives, 
not by sends.
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MPI_Send/MPI_Recv
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send buffer

Real A(100)
receive buffer

Real B(100)

Process 1 Process 2

MPI_SEND(A, 100, MPI_REAL, 2, 576,

MYCOM, IERR)

MPI_RECV(B, 100, MPI_REAL, 1, 576,

MYCOM,ISTAT, IERR)

MYCOM

MPI



MPI_ISEND
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MPI_ISEND(BUF, ICOUNT, TYPE, IDEST, ITAG, COMM, IREQ,IERR)

int MPI_ISend(void* buf, int count, MPI_Datatype type, int dest, int tag, 

MPI_Comm comm, MPI_Request *req)

MPI::Request MPI::Comm::ISend(const void* buf, int count, 

const MPI::Datatype& type, int dest, int tag) const

Nearly the same as MPI_SEND, but non-blocking. Calls to 

MPI_WAIT or MPI_TEST are usually needed for later checks if the 

communication is completed. For this purpose, the request integer 

IREQ, or object req is used. 



MPI_IRECV
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MPI_IRECV(BUF,ICOUNT,TYPE,ISOURCE,ITAG,COMM,IREQ,IERR)

int MPI_IRecv(void* buf, int count, MPI_Datatype type, int source, int tag, 

MPI_Comm comm, MPI_Request request)

MPI::Request MPI::Comm::IRecv(void* buf, int count, 

const MPI::Datatype& type, int source, int tag) const

Nearly the same as MPI_RECV, but non-blocking. MPI_WAIT or 

MPI_TEST is usually needed to check for completion. For this 

purpose the integer IREQ or the object req is used. 



MPI_WAIT

http://cac.queensu.ca 78

MPI_WAIT(IREQ, ISTAT, IERR)

int MPI_Wait(MPI_Request *req, MPI_Status status)

void MPI::Request::Wait(MPI::Status& status)

Returns only when a non-blocking communication 

labelled by the request IREQ or req is completed. 

The request is usually returned by MPI_ISEND or 

MPI_IRECV. 



MPI_TEST
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MPI_TEST(IREQ, FLAG, ISTAT, IERR)

int MPI_Test(MPI_Request *req, int *flag, MPI_Status status)

bool MPI::Request::Test(MPI::Status& status)

Returns the logical FLAG (flag) as true if the non-

blocking communication identified by IREQ (req) is 

completed, and as false otherwise. Request IREQ 

(req) is usually returned from MPI_ISEND or 

MPI_IRECV.



Collective Communications
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Some communications and other operations involve all 

processes in a given communicator and are thus called 

collective. Examples are Broadcast, Reduction and 

Barrier. Collective Communications are often more 

efficient and easier to program than the point-to-point

communications.

Collective communications are always blocking ones and 

should be called by every process in the given 

communicator. 

The following routines are collective.



Collective Communication
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Process 0

Process 2

Process 1

Process 3

Communicator



MPI_BARRIER
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MPI_BARRIER(COMM, IERR)

int MPI_Barrier(MPI_Comm comm)

void MPI::Comm::Barrier() const=0

Blocks the process until all members of the 

communicator COMM or comm have reached here. 

This routine is used to synchronize all processes in a 

communicator.



MPI_BCAST
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MPI_BCAST(BUF,ICOUNT,TYPE,IROOT,COMM,IERR)

int MPI_Bcast(void* buf, int count, MPI_Datatype type, 

int root, MPI_Comm comm)

void MPI::Comm::Bcast(void* buf, int count, 

const MPI::Datatype& type, int root) const=0

"Broadcasts" BUF (buf) of ICOUNT (count) values 

of type TYPE (type) from the process with rank 

IROOT (root) to all other processes. MPI_BCAST is 

used to disseminate information among all processes 

in the communicator.



MPI_BCAST
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Process 0

Process 1

MPI_BCAST(A,100,MPI_REAL,0,MYCOM,IERR)

MYCOM

buffer

Real A(100)

buffer

Real A(100) Process 2

Process 3

buffer

Real A(100)

buffer

Real A(100)



MPI_REDUCE
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MPI_REDUCE(SBUF,RBUF,ICOUNT,TYPE,OP,IROOT,COMM,IERR)

int MPI_Reduce(void* sbuf, void* rbuf, int count, MPI_Datatype type, 

MPI_Op op, int root, MPI_Comm comm)

void MPI::Comm::Reduce(const void* sbuf, void* rbuf, int count, const 

MPI::Datatype& type, const MPI::Op& op, int root) const=0

MPI_REDUCE takes ICOUNT (count) data of type TYPE

(type) that are stored in SBUF (sbuf) on all processes in 

COMM (comm) and reduces all the corresponding elements via 

operation OP (op), then stores the result into the corresponding 

element of RBUF (rbuf) on the process with rank IROOT 

(root). Possible operations are MPI_MAX (maximum), 

MPI_MIN (minimum), MPI_SUM (sum), MPI_PROD

(product), etc. 



MPI_REDUCE
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MPI_REDUCE(A,B,100,MPI_REAL,MPI_SUM,0,MYCOM,IERR)

process 0

Real A(100)

process 1

Real A(100)

process 2

Real A(100)

process 3

Real A(100)

Real B(100)

+

process 0

MYCOM



MPI_SCATTERV
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MPI_SCATTERV(SBUF,IS,DISP,TS,RBUF,IR,TR, IROOT,COMM,IERR)

MPI_Scatterv(void* sbuf, int *is, int *disp, MPI_Datatype ts, void* rbuf, int ir, 

MPI_Datatpe tr, int root, MPI_Comm comm)

void MPI::Comm::Scatterv(const void* sbuf, const int is[], const int disp[],

const MPI::Datatype& ts, void* rbuf, int ir, const MPI::Datatype& tr, int root) 

const=0

To scatter SBUF (sbuf) of type TS (ts) in rank IROOT (root) to all 

processes in the COMM (comm).The integer arrays DISP (disp) 

and  IS (is) are used to specify from which entry and the total number 

of entries to be scattered to each process, in the order of ranks. For a 

specific calling process, the received data will be placed into RBUF 

(rbuf) of integer IR (ir) entries of  type TR (tr) .



MPI_SCATTERV
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process 3

process 2 process 0

process 1

REAL B(IR)

REAL B(IR)

REAL B(IR)

REAL B(IR)

REAL A()

MPI_SCATTERV(A,IS,DISP,MPI_REAL,B,IR, 

MPI_REAL,0,MYCOM,IERR)

process 0

(DISP)



MPI_GATHERV
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MPI_GATHERV(SBUF,IS,TS,RBUF,IR,DISP,TR,IROOT,COMM,IERR)

MPI_Gatherv(void* sbuf, int is, MPI_Datatype ts, void* rbuf, int *ir, 

int *disp, MPI_Datatpe tr, int root, MPI_Comm comm)

void MPI::Comm::Gatherv(const void* sbuf, int is, const MPI::Datatype& ts, 

void* rbuf, const int ir[], const int disp[], const MPI::Datatype& tr, int root) 

const=0

To gather SBUF (sbuf) of integer IS (is) entries of type TS 

(ts) from a specific calling process. These data in all 

processes of the COMM (comm) will be gathered and 

placed into RBUF (rbuf) of  type TR (tr) in rank IROOT 

(root). The integer arrays DISP (disp) and IR (ir) are used to 

specify from which entry and the total number of entries to 

be placed into RBUF (rbuf), in the order of ranks for 

elements. 



MPI_GATHERV
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process 3

process2 process 0

process 1

REAL A(IS)

REAL A(IS)

REAL A(IS)

REAL A(IS)

REAL B()

MPI_GATHERV(A,IS,MPI_REAL,B,IR,DISP,MPI_REAL,0,MYCOM,IERR)

process 0

(DISP)
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User-Defined Data Types
 Users often define new data types based on 

predefined ones in their code (Fortran 90 and 
C/C++), and like to transfer them with MPI.

 However MPI never reads the code, then knows 
nothing about such User-Defined Data Types 
(UDDT). 

 Users should inform MPI the details by redefining 
them through calling MPI routines. Then they are 
called MPI UDDT or still UDDT for short.
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MPI UDDT
As a matter of fact, MPI UDDTs are not simply a 
redefinition of the regular UDDTs, but much 
wider/deeper, then much more powerful. 

MPI UDDTs can be used to send or receive any 
related and completely un-related data all 
together in the whole local memory space. 

This means data defined as of an MPI UDDT but 
never defined in any regular UDDT in the normal 
code can also be transferred together. 
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MPI UDDT

Four steps: to define, to commit, to use the 
same way as predefined data types, and to 
delete after used.

Committed MPI UDDTs can be used as 
predefined types in further MPI UDDT 
definitions.
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MPI_GET_ADDRESS
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MPI_GET_ADDRESS(DATAPOINT,ADDRESS,IERROR)

int MPI_Get_address(void *datapoint, MPI_Aint *address)

MPI::Aint MPI::Get_address (void* datapoint)

Finds the absolute byte ADDRESS of a “memory 

location”, i.e., a DATAPOINT. This call is 

commonly used to compute the true offset of a data 

point inside a structure, e.g. to load the IDISP array 

in a MPI_TYPE_CREATE_STRUCT call.



MPI_TYPE_CREATE_RESIZED
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MPI_TYPE_CREATE_RESIZED(TOLD, LOW, EXT, TNEW, IERROR)

MPI_Type_create_resized(MPI_Datatype told, MPI_Aint low, MPI_Aint ext, 

MPI_Datatype *tnew)

MPI::Datatype MPI::Datatype::Resized (const MPI::Aint low, const MPI::Aint

ext) const

Creates a new data type TNEW identical to a pre-

existing one TOLD but with reset boundaries. The 

lower boundary is set to LOW and the upper boundary 

is set to LOW+EXT. Commonly used to adapt an 

MPI_DATATYPE in size to an existing datatype in 

case of padding.



MPI_TYPE_CREATE_RESIZED
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MPI_TYPE_CREATE_RESIZED(TOLD,0,16,TNEW,IERROR)

TOLD

Real Real CharReal

TNEW

Real Real CharReal

0 13

0 16



MPI_TYPE_CREATE_STRUCT
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MPI_TYPE_CREATE_STRUCT(ICOUNT, LBLOCK, IDISP, TYPES, TNEW, 

IERROR)

MPI_Type_create_struct(int icount, int *lblock, MPI_Aint *idisp, 

MPI_Datatype *types, MPI_Datatype *tnew)

static MPI::Datatype MPI::Datatype::Create_struct (int icount, 

const int lblock[], const MPI::Aint idisp[], const MPI::Datatype types[])

Creates a new data type TNEW by concatenating 

ICOUNT blocks of changing types specified in array 

TYPES with lengths specified in array LBLOCK. 

Among each other, these blocks may not be contiguous

in memory. The onsets are specified in array IDISP.



MPI_TYPE_CREATE_STRUCT
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MPI_TYPE_CREATE_STRUCT(3,LBLOCK,IDISP,TYPES,TNEW,IERROR)

ICOUNT=3

IBLOCK=(1,2,1) IDISP=(0,8,20)

TNEW

TYPES=(MPI_INTEGER,

MPI_REAL,MPI_CHARACTER)

Int Real Real Char



MPI_TYPE_COMMIT
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MPI_TYPE_COMMIT(TYPE,IERROR)

int MPI_Type_Commit(MPI_Datatype type)

void MPI::Datatype::Commit ()

Commits a new data type TYPE and makes it ready 

for use. Must be called before first use. 



MPI_TYPE_FREE
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MPI_TYPE_FREE(TYPE, IERROR)

MPI_Type_free(MPI_Datatype type)

void MPI::Datatype::Free ()

Releases the objects associated with a data type 

TYPE. Should be called when TYPE is not used 

anymore. Datatypes that depend on the freed one are 

not affected.



A Simple Example

 In Fortran

 In C 

 In C++ 
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demo.files/uddtt4.f90.BWP
demo.files/uddtt4.c.BWP
demo.files/uddtt4.cpp.BWP
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Compiling and execution in our cluster
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To compile :

mpif90      files.f90       

mpicc files.c

mpicxx files.cpp        

To run :

mpirun –np N  executable 

where N is the number of processes.



SLURM 
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In CAC (HPCVL), all production jobs must 

be submitted to SLURM, then to cluster.
One way is as before: salloc …
The other way is as:
1, a script file should be edited, e.g. ajob

2, submitting it: sbatch ajob

3, monitoring: squeue –u THE_USER

4, submitted jobs can be deleted: scancel job#

https://cac.queensu.ca/wiki/index.php/SLURM



#!/bin/bash 

#SBATCH --job-name=My_MPI_job

#SBATCH --mail-type=ALL 

#SBATCH --mail-user=joe.user@email.ca 
#SBATCH --output=STD.out

#SBATCH --error=STD.err

#SBATCH --nodes=1 

#SBATCH --ntasks=8 

#SBATCH --cpus-per-task=1 

#SBATCH --time=0-0:30:00 

#SBATCH --mem=20GB 

mpirun -np $SLURM_NTASKS ./mpi_program

http://cac.queensu.ca 106

Script example for SLURM 
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Parallel Principles
 Try to parallel heavy computations as much as 

possible.

 Distribute sub-tasks among processes as evenly as 
possible, to reduce waiting time.

 Reduce or combine communications as much as 
possible, as eventually they become the performance 
bottleneck. 

 If possible, repeat some quick calculations across 
processes to avoid communications for them.

 Parallelize out-most loop rather than inner ones to 
reduce communications, if nested loops parallelizable.  
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About MPI I/O
 In MPI-1, each process handles I/O completely 

separately, therefore, processes will NOT cooperate. 
Results are unpredictable when multiple processes 
write into one same file.

 Simple solution: One process does all I/O, 
all others communicate with it for necessary 
information (see examples). 

 In MPI-2, parallel I/O is available (beyond the scope 
of this course, and not necessary in most cases).
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Steps for parallelizing a serial code 

 Make sure the serial code in a reasonable status. 

 Introduce MPI into the code (header file, initializing, rank, size, 
and finalizing).

 Properly handle I/Os (let one process read in all input data, 
broadcast them immediately, and do all output operations).

 Profile the code to determine which sections should be 
parallelized.

 Choose parallel method and parallelize the above sections (new 
algorithm might be needed) .

 Furthermore, distribute big arrays to save memory if possible.

 Repeat the above last three steps till satisfaction in performance 
and memory requirement.
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A simple tip
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In order to parallelize the following many

nested very limited loops:

loop1 from 1 to n1

loop2 from 1 to n2

…

loopm from 1 to nm

independent_jobs(loop_indexed)

end loopm

…

end loop2

end loop1



A simple tip
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Save loop indexes to array MMM (as an example):

count=0

loop1 from 1 to n1

loop2 from 1 to n2

…

loopm from 1 to nm

count=count+1

save_all_loop_indexes_to_MMM(count) 

end loopm

…

end loop2

end loop1



A simple tip
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Then the same computation can be done with 

the following one loop, which should be 

parallelized more efficiently:

loop from 1 to count

the_independent_jobs(MMM(loop))

end loop
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Arrays in memory



Memory is the place we place our data

In serial code, we may completely forget any details 
about how an array is managed in memory.

However, in MPI code, there are a few respects about 
arrays in memory which we should pay attention to, 
either for running the code much faster or even for 
ensuring the code running correctly. 
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A  mathematical  array
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From now on, let us consider the following mathematical 
expression of an array of M rows and N columns (M-by-
N, with both row and column indexes starting from 1):

where the elements are 

A(i,j) with i = 1,2,…, M and j = 1, 2, …, N.



















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A =   



Programming on an array
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The array can be stored in any way, 

as long as accessed accordingly. 

The usual ways are 

in FORTRAN in C/C++

or 

based on further considerations. 

REAL*8 :: FA(M,N)

…

FA(I,J)=A(I,J)

float ca[M][N];

…

ca[i][j]=A(i+1,j+1)

A = 


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









REAL*8 :: FA(N,M)

…

FA(I,J)=A(J,I)

float ca[N][M];

…

ca[i][j]=A(j+1,i+1)

normal way

transposed way



Sequence in memory 
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The next element/data in memory of the element

is always 

in FORTRAN in C/C++

if existing. 

REAL*8 :: FA(M,N)

FA(I,J)

float ca[M][N];

ca[i][j]

FA(I+1,J) ca[i][j+1]



A sketch of a computer structure
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CPU         cache, faster      main memory (RAM)

limited in size   huge in size, slow



For a piece of code, accessing elements of an array
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in FORTRAN in C/C++

is usually much slower in performance than:

DO I = 1, M

DO J = 1, N

FA(I,J) = …

…

END DO

END DO

for(i=0; i<M; i++){

for(j=0; j<N; j++){

ca[j][i] = … ;

…

}

}



For a piece of code, accessing elements of an array

http://cac.queensu.ca 122

in FORTRAN in C/C++

when the order of the I and J loops reversed, accessing 
elements in memory sequence. 

The reason is that memory has different levels with 
different sizes and speeds. The data in consecutive 
memory will automatically flow together in any case, 
then more efficient if used in sequence immediately.

DO J = 1, N

DO I = 1, M

FA(I,J) = …

…

END DO

END DO

for(j=0; j<N; j++){

for(i=0; i<M; i++){

ca[j][i] = … ;

…

}

}



To send many-element data with MPI
You inform MPI the first element (e.g.  an array element or 
point), total number of elements to be sent, and the data 
type.

Then, MPI will get the first element, the next element, the 
next next element, …, till all the required number  of 
elements in memory based on the length of the data type, 
then send them.

Then the data to be sent should be prepared in such a 
sequence in memory. 
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FORTRAN (transposed)        C/C++  (normal)



















16151413

1211109

8765

4321

A =  

FA(I,J)=A(2,2)

FA(I+1,J)=A(2,3)

FA(I+2,J)=A(2,4)

ca[i][j]=A(2,2)

ca[i][j+1]=A(2,3)

ca[i][j+2]=A(2,4)

FA(I,J) ca[i][j]

to make sure the data to be sent in sequential memory 

location and send from (if not using MPI UDDT)

To send the red elements of the array



To send the red elements of the array
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FORTRAN  (normal)             C/C++ (transposed)



















16151413

1211109

8765

4321

A = 

FA(I,J)=A(1,3)

FA(I+1,J)=A(2,3)

FA(I+2,J)=A(3,3)

ca[i][j]=A(1,3)

ca[i][j+1]=A(2,3)

ca[i][j+2]=A(3,3)

FA(I,J) ca[i][j]

to make sure the data to be sent in sequential memory

and send from (if not using MPI UDDT)



To choose normal or transposed ways 
in array coding, we need to consider 
how they will be transferred in MPI 
routines. If never being transferred or 
only broadcast as a whole in MPI, the 
performance should be considered  
when accessed by CPUs.
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It is quite often that one-dimensional 
arrays in C/C++ code are dynamically 
allocated but employed as two-
dimensional mathematical arrays. In 
such a case, we still have the choice of 
normal and transposed ways to store 
the two-dimensional array data.
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Programming for an array
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For M-row by N-column  array       in C/C++

Normal way                            Transposed way

A    
float* ca;

ca = (float *) malloc(M*N*sizeof(float)); 

/* the above in C and the next in C++ */

ca = (float *) new float[M*N];       

ca(i*N+j)=A(i+1,j+1) ca[i+j*M]=A(i+1,j+1)

A =   


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)











Memory is distributed across 
processes in MPI

Under this big background, we further have a choice 
to duplicate or distribute arrays in MPI code.
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A  = 


















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)








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

















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A  = 
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












N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)



























N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A  = 
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

















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A  = 
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

















N)A(M,A(M,2)A(M,1)

N)A(2,A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A  = 

                     

N)A(M,

...

N)A(2,

N)A(1,

                                                    

...

...

...

...

                                              

A(M,2)

...

A(2,2)

A(1,2)

                                              

A(M,1)

...

A(2,1)

A(1,1)








































































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A  = 
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

















N)A(M,A(M,2)A(M,1)

N)A(2,   A(2,2)A(2,1)

N)A(1,A(1,2)A(1,1)









A  = 

   N)A(2,    ...    A(2,2)    A(2,1)                         N)A(1,    ...    A(1,2)    A(1,1)    N)A(M,    ...    A(M,2)    A(M,1)                                                ...    ...    ...    ...
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A  = 



Round-robin distribution of two-
dimensional arrays
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A two-dimensional 8X25 array
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With block sizes of 2X4, 
the array is split into 4X7 blocks
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2D Grid of Processes

Suppose we have 2X3=6 processes with ranks 0, 
1, 2, 3, 4, and 5. The table below shows the rank
and row and column numbers of the grid of 
processors as 

rank (row, column)

5(1,2)4(1,1)3(1,0)

2(0,2)1(0,1)0(0,0)
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2D Cyclic Block Distribution
5(1,2)4(1,1)3(1,0)

2(0,2)1(0,1)0(0,0)



MPI_TYPE_CREATE_DARRAY(…)
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Memory Allocation in F90

Since the size of a distributed array in a process 
usually depends on the total number of processes 
(determined at running time), it is better to allocate 
the memory dynamically. 

FORTRAN 90 also allows so by providing 
ALLOCATE() statement. We suggest to use language 
facilities rather than to call MPI routines to allocate 
memories, then they will be working in both serial 
and parallel versions.
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The purpose of array distribution is 

to save memory.

However it also makes some additional (complicated) 
MPI communications necessary.

Since array distribution is not so straight-forward, it is 
usually done at a later stage in coding an MPI parallel 
code.  
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Examples of distributed arrays



MPI Example 3
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File f03.f90  c03.c  cpp03.cpp

Matrix C Matrix A
Matrix B

 

M
S

Z
(3

)

MSZ(2)MSZ(1) MSZ(1)

Rank 0

Rank 1

Rank 2

…

…

Rank last

Matrix A
Matrix B

M
S

Z
(2

)
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Matrix A

Rank 0 reads values for matrix A & B, then broadcast

Rank 0     Rank 1       …  …       Rank last

Matrix A

Matrix A

Matrix A

Matrix A
Matrix A

BAC 

File f03.f90  c03.c  cpp03.cpp
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Rank 0  Rank 1     …     Rank lastRank 0

MC 0

MPMP

0 0

MP

0

MP

MC

BAC 

To collect the final results into matrix C of Rank 0 with MPI_REDUCE

demo.files/f03.f90.BWP
demo.files/c03.c.BWP
demo.files/cpp03.cpp.BWP


MPI Example 4
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File f04.f90    c04.c   cpp04.cpp

Matrix

Memory for matrix A and C(P) in Example 3 

Rank 0     Rank 1       …  …       Rank last

Matrix

Matrix
Matrix

Matrix

Matrix

BAC 

Memory for matrix A and C(P) in Example 4 
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Normally, neither MPI_BCAST nor 

MPI_REDUCE can be used for 

communications for distributed arrays.

Instead, Point to Point communications

will work.

File f04.f90    c04.c   cpp04.cpp
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Rank 0  Rank 1     …     Rank lastRank 0

For assigning values to matrix A

ReadSendReadSendReadSend Read

BAC 

File f04.f90    c04.c   cpp04.cpp
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Rank 0  Rank 1     …     Rank lastRank 0

To collect data for matrix C

BAC 

demo.files/f04.f90.BWP
demo.files/c04.c.BWP
demo.files/cpp04.cpp.BWP


MPI Example 5
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File f05.f90    c05.c    cpp05.cpp

Rank 0  Rank 1     …     Rank lastRank 0

CALL MPI_SCATTERV

For assigning values to matrix A

BAC 
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Rank 0  Rank 1     …     Rank lastRank 0

CALL MPI_GATHERV

To collect data for matrix C

BAC 

demo.files/f05.f90.BWP
demo.files/c05.c.BWP
demo.files/cpp05.cpp.BWP


Comparison among 
 Example :                   3,             4,              and   5
 Calculation job :   same,        same,             same
 Parallelization:     same,        same,             same
 Memory for matrixes A and C:                                                                                              

duplicated,   distributed,    distributed
,     ,   full memory in one process

 Communication :                                     
broadcast & reduce,    P-to-P,  scatter & gather

 Programming : 
concise,    tedious, compromised 

 Suggestion :   earlier try,    later try,          later try
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Outlines
 Introduction 
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References
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Generic Model

 The big calculation task is consisted of some 
independent smaller ones, which needs 
approximately the same CPU time. 

 Then the smaller subtasks are distributed to the  
processes in the order of ranks and as evenly as 
possible. 

 Widely used, as in previous examples.
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Master-slave parallel model
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Jobs



Master-slave parallel model
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Master

(Rank 0)

only

assigns

jobs to

Slaves.

Slaves (Other ranks):

(I am idle)

(Do this job)

demo.files/f21.f90.BWP
demo.files/c21.c.BWP
demo.files/cpp21.cpp.BWP


Two-layer parallel model
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Total calculation job

Small 

job 1

Small 

job 2

Small 

job n

group 1 

of cpus

group 2 

of cpus
group n 

of cpus

No communication essentially

demo.files/c22.c.BWP
demo.files/cpp22.cpp.BWP
demo.files/f22.f90.BWP


Outlines
 Introduction 
 MPI basics

Programming environments
MPI predefined data types
Communications
User defined data types
Runtime environments
Some remarks

 Array distribution
 Sub-task distribution
 CAC bonus libraries
 References
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Double-layer Master-Slave Model



Double-layer master-slave model
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A big cluster of independent nodes

memory distributed between nodes
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Double-layer Master-Slave Model

Jobs
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Double-layer Master-Slave Model
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Job groups sent to nodes via 

MPI master-slave model

Double-layer Master-Slave Model
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Job groups sent to nodes via 

MPI master-slave model

Double-layer Master-Slave ModelJobs in a group executed 

in the node by threads via 

an OpenMP all-slave model
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Double-layer Master-Slave Model

CAC supplies the DMSM library

with source code for free.



Topics untouched
 Intercommunicators

 Data packing/unpacking

 Process topologies 

 Dynamical process creation and management

 One-sided communications

 Parallel I/O

 Typical Parallelized Libraries with MPI

 Still many other functions in touched topics
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Thank you very much for your attention!
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