
http://www.hpcvl.org1

Shared-Memory 

Programming

With OpenMP

2018 Ontario HPC Summer School

Hartmut Schmider

Centre for Advance Computing, 

Queen’s University July/August 2017



Course Requirements

 No previous experience with parallel 

programming required

 Programming background with Fortran 

and/or C/C++ is useful

 Experience with Unix helps



Part 1 Outline

 Parallel Programming

 Shared Memory and Threads

 Explicit & Automatic Threading, OpenMP Directives

 OpenMP Directives, Clauses and Routine calls

 Loop Parallelism

 Shared and private variables, scoping

 Scheduling

 Fixing Dependences

 Usage of OpenMP on Unix



Parallel Programming

 Exponential growth in speed

(Moore's Law)

of single CPUs is unsustainable

 Parallelism achieves  

performance increase (Moore's 

Law)

 Multiple processes run 

simultaneously

 Processes are static or 

dynamically created



Serial and Parallel Programming

Serial (sequential) program: runs on one processor  at 

a time. Program structure is conventional, one 

instruction after the other in a predictable order.

Parallel program: runs on several processors at a time, 

at least in part. Program structure might be non-

conventional, instructions do not imply a specific 

order.



Serial Code Parallel Code

Process

CPU

P

C

P P PP ……

C C C……

User

System



Number of Processes

For efficiency, always choose the 

number of processes smaller than the 

number of  available CPU’s. This 

ensures that every process occupies 

one CPU exclusively, i.e. is executed on 

a dedicated processor.



Parallelism & Concurrency

Parallelism:

– More than one process is 

present and executing at 

a given time.

– Usually requires separate 

hardware, “cores” or 

CPU's.

– Used to scale programs, 

i.e. reduce execution time 

by a given factor.

Concurrency:

– More than one process is 

present and active, but not 

always executed at the 

same time.

– Can be achieved with 

single core and CPU that 

“switches”.

– Increases flexibility and 

responsiveness.



Instruction-Level Parallelism
● ILP appears on local level even in serial code.

● Usually, ILP is exploited by the compiler, using techniques such as 

pipelining, out-of-order execution, speculative execution, and 

branch-prediction.

● Hardware may support ILP, for instance through “superscalar” 

CPU's and pipelines.
...

a+=c*c;

b+=d-e;

g=a*a+b;

...

Could be done simultaneously if CPU allows

more than one floating-point operation



Speedup, Scaling, Efficiency

 Speedup is the ratio between serial and parallel execution 

times:

 If the speedup is equal to the number of processors in the 

parallel case, the program is said to scale linear.

 In most (but not all) cases, the speedup will be smaller then 

the number of processors (sub-linear scaling).

 Efficiency is the ratio between the Speedup and the 

number of processors:



Strong and Weak Scaling

Strong Scaling:

How does the execution time vary as a function of the number of 

processors, given a fixed problem size. Linear best-case scenario: 

N times the processors, 1/N times the execution time.

Weak Scaling:

How does the execution time vary as a function of the number of 

processors if the problem size scales with the latter, i.e. given a fixed

workload per processor. Linear best-case scenario: Execution time

stays constant.



Amdahl's Law

Amdahl's Law: The speedup for a parallel program is limited by 

the fraction of time spent for execution of the serial portion of 

the program, Fs. It is

This means that no matter how many processors, the speedup 

cannot exceed the inverse of the serial fraction.



Amdahl's Law: Example

Here is the (pretty bad) scaling behaviour of a multithreaded dot-product code

Time  (serial units)

Efficiency

Speedup

Serial Fraction

approx 0.72

Curves: Amdahl's Law

Symbols: Experiment



Amdahl's Law (cont)

• Amdahl's Law is very relevant for shared-memory 

parallelization, because often only parts of the 

code are “parallelized”.

• It is important to parallelize those portions where 

most time is spent in a serial run.

• Fortunately, often the parallel portion of the 

runtime increases with increasing problem size. 

Thus AL may be overly pessimistic.



Load Balancing

– It is important to make sure that all processes do useful 

work at any given time

– If a workload is distributed among processes, one 

needs to make the subtasks as equal as possible

wastedcomputation



Shared Memory

 Shared Memory: 

All CPU’s are connected via a memory bus 

to a common memory pool

 Usually, each CPU has its own register and cache

 Little communication between CPU’s is needed as all work on 

the same memory space

 Fast, efficient, and often easy to program but

 Expensive and of limited expandability



Shared Memory (cont)

CPU

Memory

Memory Bus



Distributed Memory

 Distributed Memory:

CPU’s are independent and have their own memory, 

register and cache

 CPU’s are interconnected via Ethernet, fast switches, 

optics etc.

 Communication between CPU’s is necessary to make 

them work together:  bottleneck

 Often hard to program for but

 Cheap and expandable



Distributed Memory (cont)

CPU

Interconnect

Memory



Shared vs Distributed Memory
Shared Memory Distributed Memory

Pro

Con

 Easy to program and convert

 Auto-parallelization possible

 Little communication overhead

 Fast

 Works with DM programs

 Cheap

 Easily extended

 Good scaling (>1000 CPUs)

 Good control by user

 Communication, slow

 Often more difficult

 Conversion non-trivial

 Explicit parallelization

 SHM programs don't work

 Expensive

 No expandability, fixed size

 Scaling limited if simple 

approach is taken

 Hidden complexities

Pro

Con



Which is Better ?

Shared memory

if (and that’s a big if)

You can afford it



Threads

A thread is a dynamically created process, sometimes also called a 

“lightweight process”.

Dynamic creation means that the original process (often called 

“master thread”) spawns additional processes (threads) and 

destroys them when they are not needed anymore.



Multithreading: Shared Memory
 Shared memory supports multithreading over multiple processors

 The program is started “in serial mode”

 Temporary “light-weight” processes = threads are created 

dynamically

 Can be done 

explicitly (e.g. Posix threads)

automatically at compile time

via directives (e.g. OpenMP)

 This technique is often used to create a flexible program 

structure, even if only one CPU is available (serial, e.g. OS)



Start

End

serial

“serial”

parallel

serial

parallel

Threads 
inactive

Multithreading



Start

End

Communication

Multiprocessing



Multithreading (cont'd)

– Often used for “task parallelism”

– If several independent task are to be performed in a 

loop they can be “distributed” among threads

– Also often:  “loop parallelism”



Unix Procs & Threads

 Unix processes are created by the OS

 Associated Information and overhead:

Process ID, instructions, registers, stack with pointer, heap, file 

descriptors, signal, libraries ...

 Threads are created by a main process 

and share its resources, bringing down overhead and latency

 Threads maintain their own registers, stack, block signals, and 

“thread specific” data

 Just enough to run threads independently



Pros & Cons of MT

 Exploitation of 

parallelism on multi-

CPU hardware

 Exploitation of  

Concurrency on all 

systems

 Modularity and 

Flexibility

 Computing overhead, 

largely to synchronization

 Increased complexity and 

programming discipline

 Libraries may not be 

thread-safe

 Harder to debug



Posix Threads

 Explicit creation and handling of threads

 Used from C-programs, using library 

libpthread.so

 Available for all Unix platforms 

(e.g. Solaris, Linux, etc)

 High degree of control, but difficult in practice



#include <stdio.h>

#include <stdlib.h>

#include "pthread.h"

void *output(void *arg);

int main(int argc, char *argv[]){

int id,rv,nt=atoi(argv[1]);

pthread_t* thread=(pthread_t*)malloc(nt*sizeof(pthread_t));

int* ids=(int*)malloc(nt*sizeof(int));  

for (id=0;id<nt;id++){ /** Create threads **/

ids[id]=id;

rv=pthread_create(&thread[id], NULL, output,(void*)&ids[id]);}

for (id=0;id<nt;id++) rv=pthread_join(thread[id],NULL);

return(0);

}

void output(void arg){ /** Hello world function **/

printf("Hello from thread Number %d\n",(int*)arg);

return 0;}

A Posix Example



Automatic Parallelization

 Great advantage of multithreading:

Compilers can “auto-parallelize” serial code

 Available for some compilers, for instance 

studio on Solaris, intel on Linux

 Extremely simple to use, but caution is 

recommended, as compilers are “conservative”



Automatic MT  (cont)

● Only a compiler option is required:

-parallel for intel/Linux, 

-xautopar for studio/Solaris

● May need optimization to work:

-xO3 for studio/Solaris

● Reduction operations involving all threads help:

–xreduction for studio/Solaris



Example: Automatic MT

subroutine test(a,b,c,n,sum)  

integer :: i,n

real*8 :: a(n),b(n),c(n),sum  

a=b+c ! Line 4: Easily parallelized  

do i=1,n-1  ! Line 5: Loop dependence

a(i+1)=a(i)+b(i)

end do  

sum=0  

do i=1,n ! Line 9: Requires Reduction

sum=sum+a(i)  

end do

end subroutine test



Example  (cont)
(on SUN system for demonstration, no reduction on Linux)

Without reduction:
bash 2.05$ f90 -c -xO3 -xautopar -xloopinfo autotest.f90

"autotest.f90", line 4: PARALLELIZED, and serial version generated

"autotest.f90", line 5: not parallelized, unsafe dependence (a)

"autotest.f90", line 9: not parallelized, unsafe dependence (sum)

With reduction:
bash 2.05$ f90 -c -xO3 -xautopar -xloopinfo -xreduction autotest.f90

"autotest.f90", line 4: PARALLELIZED, and serial version generated

"autotest.f90", line 5: not parallelized, unsafe dependence (a), distributed

"autotest.f90", line 9: PARALLELIZED, reduction, and serial version generated



Multithreading in OpenMP

 In OpenMP, the parallel region is a block of code which is executed 

simultaneously by a Master Thread (with an ID=0) and Worker

Threads (ID>0)

 Work sharing is either done by special constructs (“parallel do”), 

or explicitly (“parallel”)



OpenMP Compiler Directives

– To help the compiler parallelizing loops, we use compiler 

directives. These are like “local compiler flags” and are 

written into the source code.

– They are not function calls or other executable code lines.

– A common standard for these is OpenMP

– OpenMP Compiler directives are only interpreted if the –

openmp compiler flag is issued.



Example: Compiler Directives

subroutine test(a,b,c,n,sum)

integer :: i,n

real*8 :: a(n),b(n),c(n),sum,sumup

!$omp parallel do ! Compiler Directive: forces parallelization

do i=1,n

a(i)=sumup(b(i),c(i)) ! Possible dependency: no auto

end do

end subroutine test

real*8 function sumup(x,y) ! Sum hidden in a function

real*8 :: x,y

sumup=x+y

end function sumup



Example (cont)
(on SUN system for demonstration, does not react the same way on Linux)

Without compiler directives:

bash-2.05$ f90 -c -xO3 -xautopar -xloopinfo testomp.f90

"testomp.f90", line 5: not parallelized, call may be unsafe

With compiler directives:

bash-2.05$ f90 -c -xO3 -xautopar –xloopinfo –xopenmp

testomp.f90

"testomp.f90", line 5: PARALLELIZED, user pragma used



Shared-Memory Programming is usually simpler than 
Distributed-Memory Programming. 

However, there are some pitfalls:

 Data Dependencies

 Race Conditions

 False Sharing

Issues With 

Shared Memory Programming



Data Dependency

fact(1)=1

do i=2,n

fact(i)=fact(i-1)*i

end do

Loop cannot be parallelized by distributing 
iterations among threads, because each 
iteration depends on the previous one.

If the compiler refuses to auto-par code because of dependences, it is 
necessary to investigate if there actually are any. Only if you are sure 
there are not, proceed.



Race Conditions

…

do i=1,100

total = total + b(i)*c(i)

end do

…

In this loop, there may be a problem, because 
multiple threads may be updating total at the same 
time. The result depends on “who comes last”. 
Thus, “race condition”. The compiler will assume 
the worst and refuse to parallelize this.

Race conditions can be very hard to detect, and their result may be subtle. If you 
receive “inaccurate” results depending on the number of processors, and seemingly 
the weather, you might have a race condition. These can be resolved by the use of 
“critical regions” or locks.



False Sharing

If different threads use data from the same cache line, anytime an 

update occurs on one thread, the cache line has to be re-read on all 

others, incurring a cache miss (“cache coherence”).

False Sharing does not lead to wrong results. However, severe 

performance degradation can occur.

This problem can often be fixed.



Practical Stuff

Most modern compilers are OpenMP enabled

OpenMP works with Fortran, C, and C++

Basic compiler option on Linux (intel): 

-qopenmp [enables OpenMP] 

This compiler option may imply a minimum optimization level
that is automatically enforced even if not specified



Most Important Environment Variable

Commonly used to set conditions for program execution

OMP_NUM_THREADS=n

number of threads, 

default sometimes 1, sometimes number of cores.



OpenMP

– A set of compiler directives for declaration of parallelism in 
source code

– Also includes a supporting library of functions/routines

– Works with Fortran, C and C++

– Requires enabled compilers which are available for most 
platforms that support shared-memory parallelism

– Information on website

http://www.openmp.org

http://www.openmp.org/
http://www.openmp.org/


OpenMP: Some History

● 1980’s: SHM compiler directives proprietary & platform specific

● Early efforts at standardization (CMFortran, C*, HPF) failed

● 1996: OpenMP Architecture Review Board, industry standard

● Original members: ASCI, DEC, HP, IBM, Intel, KAI, SGI

● Later joined by SUN and Compaq

● 1997 Fortran v1.0, 1998 C/C++ v1.0

● Presently non-profit, ongoing development

● More recently (May 2008): OpenMP 3.0

● July 2013: OpenMP 4.0

● In preparation (2018): OpenMP 5.0

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf


Why OpenMP ?

– Most platforms support it, industry standard

– Small and simple

– Good for latest multicore architectures

– Parallelization can be done incrementally

– Newer software/libraries use it

– Standardization makes code largely platform 

independent



OpenMP Directives: Basic Format

!$omp … Fortran free format

!$omp … & Requires continuation line

#pragma omp … C and C++

The first symbol is either interpreted as a comment symbol (!,Fortran) or indicates a 
preprocessor construct (#,C/C++) if no OpenMP compiler flag is issued. If OpenMP is 
enabled, it will be interpreted as OMP directive.



OpenMP Routines

– OpenMP also supplies supporting routines

– If compilation/linking is done with OpenMP enabled, the proper 
libraries are linked in automatically

– For Fortran
use omp_lib

– For C and C++, use
#include <omp.h>

– The routines are functions or subroutines with names that start with 
omp_



Conditional Compilation (Fortran)

A code line that starts with:

!$  … (free format, two spaces)

is only recognized as a line of Fortran

code if OpenMP is enabled, otherwise it is interpreted as a 

comment.



For C and C++, Pre-processor constructs are used:

encloses code lines that are only retained if OpenMP is enabled, 
otherwise they are skipped. Do not define this keyword explicitly.

Conditional  Compilation (C/C++):

#ifdef _OPENMP

...

#endif



OpenMP Routines

– Query routines, e.g.

integer omp_get_num_threads()

integer omp_get_thread_num()

logical omp_in_parallel()

– Lock routines, e.g.

omp_set_lock(addr)

omp_unset_lock(addr)

There are many others, but these are the most 

commonly used.



OpenMP: Example (FORTRAN)

program helloworld

!$ use omp_lib

write (*,*)' Here is the main thread (serial) ...'

!$omp parallel

!$  write (*,*)' ... and here is thread number '&

!$       ,omp_get_thread_num(),' (parallel) ...'

!$omp end parallel

write (*,*)' ... and now it is serial again.'

end program helloworld

OpenMP directives mark and enclose 
a parallel region

This line
calls an OpenMP function and is only compiled 
conditionally



OpenMP: Example (C)

#include <stdio.h>

#include <omp.h>

int main(){

printf("Here is the main thread (serial) ...\n");

#ifdef _OPENMP

#pragma omp parallel

{printf(" ... and here is thread number %d %s \n",

omp_get_thread_num(), "(parallel) ...");}

#endif

printf(" ... and now it is serial again.\n");

return 0;

}

OpenMP directive and {} mark and 
enclose a parallel region

This line
calls an OpenMP function and is only compiled 
conditionally



Example: Serial

$ ifort -o hello_s.exe -O5 hello.f90

OMP_NUM_THREADS=4 ./hello_s.exe

Here is the main thread (serial) ...

... and now it is serial again.

Setting # of processors
Compiling (no OpenMP)

Execution proceeds in serial, although number of procs was set



Example: Parallel

$ ifort -o hello_p.exe -O5 -openmp -openmp-report=2 hello.f90

hello.f90(4): (col. 7) remark: OpenMP DEFINED REGION WAS PARALLELIZED.

$ OMP_NUM_THREADS=4 ./hello_p.exe

Here is the main thread (serial) ...

... and here is thread number            0  (parallel) ...

... and here is thread number            2  (parallel) ...

... and here is thread number            1  (parallel) ...

... and here is thread number            3  (parallel) ...

... and now it is serial again.

# of threads

Compiling (OpenMP)

Execution proceeds in parallel



“Sum of Square Roots” Example

Most of the work is in the evaluation of the square roots.

Let’s use different thread for different square roots.



program rootsum ! Sum of squareroots of integers

integer :: i,m

real*8 :: sum=0.d0

read(*,*)m

!$omp parallel do reduction(+:sum)

do i=0,m          

sum=sum+sqrt(dfloat(i))

end do

!$omp end parallel do

write(*,*)' Result =',sum

stop

end program rootsum

For simple cases, an OpenMP program is just the serial code
with a few directives “thrown in”:



Example (cont'd)

Speedup = Ts/Tp
= 8.77/1.23 = 7.1

$ ifort -O3 rootsum.f90

$ time -p ./a.out < rootsum.in

Result =   28918862541603.5

real 8.77

user 8.76

sys 0.00

$ ifort -O3 -openmp -openmp-report=2 rootsum.f90

rootsum.f90(5): (col. 7) remark: OpenMP DEFINED LOOP WAS PARALLELIZED.

$ OMP_NUM_THREADS=8 time -p ./a.out < rootsum.in

Result =   28918862541603.0

real 1.23

user 9.17

sys 0.02

$ cat rootsum.in

1234567890



Loop Parallelism: PARALLEL DO

The simplest OpenMP directives are concerned with loop 

parallelism. In many cases these are sufficient for some parallel 

performance

The simplest form is

PARALLEL DO (Fortran)

parallel for (C/C++)

This must be followed by a do (for) loop and extends to the end of 

that loop. It distributes the iterations across threads to achieve 

parallelism. 



PARALLEL DO (for)

The parallel do (for) directive causes a do (for) loop that follows it to be 
executed in parallel, even if the loop has data dependencies. Afterwards the 
threads are “destroyed”.

!$omp parallel do

do i=2,n-1

a(i)=b(i+1)+c(i-1)

end do

By default, variables are shared, with the exception of loop indices which
are private, i.e. each thread has its own value.

#pragma omp parallel for

for (i=2;i<n;i++){

a[i]=b[i+1]+c[i-1];

}



Data Scopes

We need to declare if the variables inside a parallel region 
(loop) are

shared (list…)

i.e. all threads see the same value and the variable is accessible to all 
threads, or

private (list…)

i.e. each thread has its own copy of the variable and they can 
not access each others values. 

This is done through a “clause” that follows the omp directive.



Default Scoping Rules

● By default, all variables are shared

● Exceptions:

 All loop indices must be private by default, i.e. both for 

parallel loops, and loops inside (Caution: not in C, only 

parallel loops)

 Local variables inside functions that are called in parallel 

loops are private



Private Variables

 Private variables are allocated in new and separate memory 

locations

 Each thread has its own copy in memory, different from the 

others, and from the “serial” variable

 private variables are not initialized on loop entry

 The serial variable is effectively invisible in a parallel loop

 The serial variable does not have a specific value on loop exit, 

i.e. do not rely on consistency of private variables after the loop.



Private Variables

x=12

…

!omp parallel do private(X)

do i=1,100

…

x=i*120+1

…

end do

…

What is x here ? 
Certainly not 12001. 

Possibly still 12, but don’t rely on it.
Better to re-initialize.



firstprivate and lastprivate

● If you need to initialize a private variable with the 

“sequential value”, use the firstprivate

declaration

● If you want to re-initialize a sequential value with a 

private variable, use the lastprivate declaration

● These are not necessary if the private variable is 

temporary, but can be useful in other cases



...
s(1)=f(1,1)

t(1)=f(2,1)

!$omp parallel do firstprivate(s,t) lastprivate(s,t)

do i=1,n

s(2)=a(i)*s(1)

t(2)=b(i)/t(1)

x(i)=s(2)+t(2)

y(i)=s(2)-t(2)

end do

p=s(2)*t(2)

q=s(2)/t(2)

...

Initialized with serial value
because of firstprivate

Retains value for i=n
because of lastprivate

firstprivate and lastprivate



Default Scoping Rules

By default, all variables are shared

Exceptions:

 All loop indices (even contained ones) must be private by 

default 

Caution: not in C, only parallel loops

 Local variables inside functions that are called in parallel loops 

are private



Example:

program default

integer :: i,j,k=10

real*8  :: x(10)

do i=1,10

x(i)=sqrt(dfloat(i))

end do

!$omp parallel do

do i=1,10

do j=1,10

call sub(x(i),k,j)

end do

write (*,*) i,x(i)

end do

end program default

subroutine sub(a,in,index)

real*8 :: a

integer :: in,index,isub,ic=5

do isub=1,index

a=a+dfloat(in+ic)

end do

return

end subroutine sub

Private: i,j,index,ic

Shared: x,a,k,in



In Practice: Large Loops
Sometimes it is best to put the loop content into a routine to 
keep most local variables private and to minimize chances 
for errors and memory conflicts

do i=1,n

x=...

a= ... x ...

b(i) = ...a...

do j=1,m

...

end do

...

end do

do i=1,n

call sub(i,b,m,...)

end do

subroutine sub(i,b,m,...)

x=...

a= ... x ...

b(i) = ...a...

do j=1,m

...

end do

...

return

end subroutine

!$omp parallel do shared(b,m,...)

do i=1,n

call sub(i,b,m,...)

end do

subroutine sub(i,b,m,...)

x=...

a= ... x ...

b(i) = ...a...

do j=1,m

...

end do

...

return

end subroutine



Changing the Default

 With a default() clause, you can change the default setting for variable

 Takes one of shared, private, and none as argument (no private in C and 

C++).

 Used when most of the variables need to be private (in Fortran)

 default(none) might be a good idea as it forces declaration of all variables



Some Other Clauses

The declaration of private or shared variables is an example for clauses. There are 
several types:

 Scoping clauses (private, shared, default, etc)

 reduction clause (actually, also a scoping clause)

 schedule clauses, assigning iterations to threads

 if clause for conditional parallelism

There are many others



reduction

– In many cases, loops involve operations, where iteration 
specific values are “reduced” to a single variable. (see 
MPI_Reduce).

– Such a variable should be declared with a reduction clause:
reduction(op:var)

where op is an operation (+,*,max,min,…) and var is 
the reduction variable



reduction (cont)

do i=0,m    

sum=sum+sqrt(dfloat(i))

end do

!$omp parallel do reduction(+:sum)

do i=0,m 

sum=sum+sqrt(dfloat(i))

end do

!$omp end parallel do

No problem, since the order
of summation does not matter

do i=0,m

sum=sqrt(sum+dfloat(i))

end do

Problem, since the order
of this operation matters



Scheduling

There are two ways in which iterations in a parallel loop may 

be distributed among threads:

– Static schedules: determined beforehand, iterations are 

assigned according to fixed schedule. Fast but inflexible.

– Dynamic schedules: determined at runtime, iterations 

are assigned to idle threads. Flexible but overhead.

This is done using the schedule(type,size)clause, where 

type indicates the schedule type (static, dynamic, guided, runtime) and 

size gives the size of the iteration “chunks” involved.



Scheduling (cont'd)

● Controlled by the schedule(type,size)

clause which is issued after the parallel do

directive.

● type can be static, dynamic, guided, or runtime

● size is a chunk size that is used to create work loads by 

grouping iterations



static

● If type is static, each thread gets assigned chunks of 

iterations of fixed size size in a round-robin fashion. 

Remaining iterations are distributed by the system.

● If size is omitted, it is chosen such that all chunks are 

equal-sized, and there is one per thread.

● Low overhead



dynamic

● If type is dynamic the iterations are divided into 

chunks of fixed size size and then assigned to 

threads whenever a thread is idle.

● If size is omitted it is set to 1

● High overhead



guided

● If type is guided, iterations are divided into 
chunks of exponentially decreasing size. The smallest 
chunk size is size.

● Details are implementation specific.

● If size is omitted it is set to 1.

● The chunks are assigned dynamically, i.e. a thread 
gets one when it’s idle.

● Very high overhead



runtime

● If type is runtime, the schedule is determined by the environment 

variable OMP_SCHEDULE

● OMP_SCHEDULE is of the same format as the arguments of 

schedule.

● If OMP_SCHEDULE is not set, the choice of schedule is implementation 

dependent



Example: Mandelbrot Set

If z->z2+c stays below |z|<2 after n iterations: black
Do this for -1.5<Re(c)<0.5; 0<Im(c)<1
Problem: lower half much blacker than upper half



Mandelbrot Set (cont'd)

Sometimes the type of scheduling makes a big difference. Here a loop iteration corresponds to a line with 
constant imaginary part. The dynamic scheduling scales but the static one doesn’t. This is similar to “Master-
Slave” model in MPI. We will encounter another version of it again.

1 2 4 8

0

1

2

3

4

5

6

7

8

9

Sp
ee

d
u

p

Rel. Perf (serial=1)

static

dynamic



if()

● Sometimes necessary to make use of directive dependent 

on runtime situation

● Argument: logical expression

● OMP directive only used if argument is TRUE

(conditional parallelization)

● For instance, loop only parallel if minimum number of 

iterations:

!$omp parallel do if (n.gt.minn)



nowait

● Work-share directives usually imply a barrier, i.e. 

threads wait until all threads finished

● nowait is used to override that barrier

● Does not work with end of parallel region

● Increases efficiency and load balance

● Caution: Later code may depend on results, 

nowait may improve speed, but also break code



flush

● Shared data are not immediately updated in memory when written by a 

thread, since registers, caches etc. serve as buffers

● Instead, they are updated at barriers, e.g. at exit from parallel or critical 

regions

● If updating is required in between, use flush

● Sometimes required with locks

● nowait cancels barriers and therefore implicit updating



ordered (…later)

● Used to mark loops that may contain ordered sections

● ordered sections are discussed later; they are declared by an ordered

directive

● In those sections, things are done in serial order, i.e. they limit parallel 

execution.



copyin
(…later)

● The copyin clause is used together with the 

threadprivate declaration, and will be discussed 

later

● Its argument is a list of variables

● Its effect is to copy the value of a variable of the 

“master thread” onto a “slave thread”

● It can only be used with special threadprivate

data



More About Parallel Loops

● Must be static, i.e. the number of iterations is fixed (do/for

loops). Dynamic loops such as “while loops” are not allowed 

(see OMP3 for an exception).

● Dynamic loops (e.g. while loops) are intrinsically dependent, 

as it depends on the data if an iteration is executed.

● Nested loops: only one may be parallel, the others (inside or 

outside) are performed sequentially, even within a thread

● Newer implementations allow nested-loop parallelism. 

Caution!



Dependencies:

– Find them

– Identify them

– Resolve them if possible



Finding Dependencies

Read only?

Is a variable in a loop …

R/W within same

iteration?

Independent

of order?

Yes
No problem

No

Yes
No problem

Yes
No problem

No

No
Problem



Types of Dependencies

Not a problemNon Loop Carried

Can be handledLoop Carried

Output Dependence

Can be handledLoop Carried

Anti Dependence

Yes, often prevents

parallelization

Loop Carried

Flow Dependence

Serious?Type



Loop Carried

● A data dependence exists if the computation of one 

data point requires previously computed other data.

● If the required data are computed in another  loop 

iteration, the dependence is called “loop carried”.

● Loop carried dependence are often a problem 

because they assume an execution order that does 

not exist in a parallel loop.



Flow Dependence

This is the “classic” data dependence.

Executing one iteration requires data from a previous 

one, thus forcing an order.

do i=2,n

x(i)=(x(i)+x(i-1))/2

end do

Flow dependences range 

from blatant …

do i=2,n    

if(step(i).eq.1) y=i

x(i)=y

end do

…to hidden and can often

not be removed.

Hint: 

If step(i).ne.1

the y value

from previous 

iteration is used)



Anti Dependence

This is a “backwards” data dependence in that

one iteration requires data that would be modified “later” in the 

serial case, implying an order that is not there in the parallel 

case.

do i=1,n-1 

x(i)=(y(i)+x(i+1))/2

end do

Anti dependences look a bit 

like flow dependences, but 

can usually be handled 

much easier.



Output Dependence

This is a data dependence that implies a serial loop order, 

usually by relying on a specific loop iteration being 

executed last, and using a variable from inside the loop 

outside of it.

do i=1,n

a=(x(i)+y(i))/i

end do 

f=sqrt(a+b)

Output dependences occur when 

assumptions are made about which 

iteration changes a variable last. 

They are easy to handle.



Removing Dependencies

Not necessaryNon Loop Carried

lastprivate() clauseLoop Carried

Output Dependence

auxiliary arrayLoop Carried

Anti Dependence

reduction() clause

loop skewing

induction variable elimination

Loop Carried

Flow Dependence

Removal TechniquesType



Flow Dependences:

As we have seen before, flow dependences can be removed by 
reduction if the operation that causes it does not depend on order

do i=0,m 

sum=sum+sqrt(dfloat(i))

end do

!$omp parallel do reduction(+:sum)

do i=0,m           

sum=sum+sqrt(dfloat(i))

end do

!$omp end parallel do

No problem, since the order

of summation does not matter

Only in special cases

reduction()



Flow Dependences:

If the computation of one array element in one iteration depends on 
an element of another array from a “previous” iteration, shifting 
computations to another iteration(“loop skewing”) solves the problem.

do i=2,n

x(i)=(x(i)+y(i-1))/2

y(i)=y(i)+z(i)

end do

Regrouping one line makes 

dependency non-loop carrying

Can’t be parallelized because 

iteration i needs y element 

from iteration i-1

Only in special cases

x(2)=x(2)+y(1)

!$omp parallel do

do i=2,n-1   

y(i)=y(i)+z(i)

x(i+1)=(x(i+1)+y(i))/2

end do

y(n)=y(n)+z(n)

Order 

reversed!

loop skewing

“Loop 
Skewing”



Flow Dependences: 

In some cases, variables that establish a data dependence can be 
eliminated by reference to the loop index.

factor=1

do i=1,n

x(i)=factor*y(i)

factor=factor/2

end do

!$omp parallel do

do i=1,n

x(i)=y(i)*0.5**(i-1)

end do

factor=0.5**n

factor establishes an 

unnecessary dependence …

“Elimination”

Warning: This works only in special cases

.. and might as well be kicked out of 

the loop. If it is used later, we may 

compute it outside.

elimination of induction variables



Anti Dependences: 

Anti dependences can be resolved by copying the needed data 
into a new array that contains the needed elements as they were 
before the parallel loop was executed.

xp=x

!$omp parallel do

do i=1,n-1 

x(i)=(y(i)+xp(i+1))/2

end do

Since nothing has happened to

x(i+1) when it is needed in serial…

“Auxiliary” xp

.. we can save the unaltered x in xp

before the loop and eliminate the 

dependency

do i=1,n-1 

x(i)=(y(i)+x(i+1))/2

end do

auxiliary array



!$omp parallel do lastprivate(a)

do i=1,n

a=(x(i)+y(i))/i

z(i)=a

end do 

f=sqrt(a+b)

Output Dependences: 

Output dependences occur when the value of a variable that is used 

inside and outside of the loop depends on a specific iteration being 

executed last. The lastprivate() clause takes care of this.

The implicit assumption is 

that iteration n is last to 

alter a …

“lastprivate”

… which is exactly the effect 

of lastprivate(a)

do i=1,n

a=(x(i)+y(i))/i

z(i)=a

end do 

f=sqrt(a+b)

lastprivate()



Outline

 Parallel regions: out of the loop

 Work sharing in parallel regions

 threadprivate and copyin

 critical regions and synchronization

 What to do about false sharing



Parallel Regions
 Not all OpenMP parallelism is “loop parallelism”

 It is possible to define a “stand-alone” parallel region using  
parallel

end parallel

in Fortran or 
parallel

{}

in C

 The effect of this that a set of threads is created and all of them work 
through the enclosed block of code separately, just like in MPI

 This style of OpenMP programming requires the use of routines.



Hello World

program helloworld

!$ use omp_lib

write (*,*)' Here is the main thread (serial) ...'

!$omp parallel

!$  write (*,*)' ... and here is thread number '&

!$       ,omp_get_thread_num(),' (parallel) ...'

!$omp end parallel

write (*,*)' ... and now it is serial again.'

end program helloworld

OpenMP directives enclose a 

parallel region

These enclosed lines are compiled “conditionally” (!$ followed by a blank), 

i.e. only if OpenMP is enabled with the –xopenmp flag. They are calling the 

OpenMP supporting routine omp_get_thread_num() to determine their “ID” 

(like rank in MPI).



Using parallel/end parallel

 The workload must be allocated explicitly

 The techniques used are similar to the ones used in 

distributed-memory (MPI) programming

 In many cases, threads work on separate portions of 

one or several (shared) arrays



nthr = omp_get_num_threads()

sub = (m-1)/nthr+1

!$omp parallel private(ithr,from,to)

ithr = omp_get_thread_num()  

from = ithr*sub+1

to = min(from+sub-1,m)

do i=from,to

sqrs(i)=sqrt(dfloat(i))

end do

!$omp end parallel

Number of threads and thread number () 

(like size and rank in MPI)

Work load computed

explicitly. Each thread

does part of the work 

(from…to are private)

The sum over the array is done sequentially afterwards



Assigning Work

● Loops inside a parallel regions can be handled using the 

do/end do directive(s)

● It is possible to designate sections for different threads by 

the section directive

● Sometimes only one thread is needed:

single or the master directives

● Fortran only: workshare

● Often it's just done “manually", just as in the previous 

example



The do Directive

● The do directive is called within a pre-defined (via 

parallel directive) parallel region.

● Within the loop enclosed by do and end do iterations 

are distributed the same way as in a parallel do

region

● Often combined with the single/end single

directive which marks region inside a parallel region 

that are only executed by one thread



do/end do

!$ omp parallel

!$ omp end parallel

(replicated)

!$omp do

do i=1,n

...

end do

(shared as in

parallel do)



section Directive

● The sections directive declares part of the code as 

containing “chunks” of work that are executed by 

separate threads

● Each of the chunks start with a section directive

● The sections are then distributed among threads 

automatically.

● Each section is executed by one thread, each thread 

does zero or more sections.



sections/section

!$ omp parallel

!$ omp end parallel

(replicated)

!$omp section

job 1 ...

!$omp section

job 2 ...

!$omp section

job 3 ...

!$ omp sections

!$ omp end sections

(distributed)



single and master

● A sections of code labeled by the single directive is only

executed by the first thread that encounters them. The 

others skip it.

● If the master directive is used instead, it is the master 

thread that does it. The others skip it.



single and master directives

!$ omp parallel

!$ omp end parallel

(replicated)

!$omp single

...single job...

!$omp end single

(only one thread)

!$omp master

... master job ...

!$omp end master

Thread 0 (master)



workshare (Fortran only)

• Fortran offers special array syntax that lets you assign and 

manipulate arrays and array sections simple statements

• workshare “splits” these statements into units and 

assigns blocks of such units to multiple threads

• Also works with forall and where statements

• The assignment to threads is implementation dependent

!$omp parallel

!$omp workshare

a(:,1)=b(:)*x(:,2)

!$omp end workshare

!$end parallel

Fortran allows sections of arrays;

(:) stands for full range;

workshare splits up computations and

assigns them to the threads in the 

parallel region



Lexical and Dynamic Extents, Orphaning

● The block of code that appears between the parallel/end 

parallel directives is called the lexical extent of a parallel 

region

● If we include the code in all routines that are called, we 

obtain the dynamic extent

● Directives that appear in those routines, i.e. in the dynamic 

but not the lexical extent, are called orphaned

● Orphaning directives is frequently necessary, e.g. with do

directives



$!omp parallel

$!omp end parallel

call f()

f(...)

!$omp do

do i=1,n

call f()

Lexical Extent

Dynamical Extent

The !$omp do directives are orphaned

Lexical and Dynamic Extents, Orphaning

call f()

f(...) f(...)

!$omp do

do i=1,n

!$omp do

do i=1,n



Usage of threadprivate

Sometimes global data 

cause race conditions:

program main

common /problem/ w(1000)

...

!$omp parallel do

do i=1,n

call sub(i)

end do

...

end

subroutine sub(j)

common /problem/ w(1000)

...

do i=1,1000

w(i)=...j...

end do

...

return

end subroutine

common /problem/ w(1000,nt)

...

it=omp_get_thread_num()+1

do i=1,1000

w(i,it)=...j...

end do

...

common /problem/ w(1000)

!$omp threadprivate(/problem/)

...

do i=1,1000

w(i)=...j...

end do

...

Either expand the common block 

or global array...

... or declare it threadprivate



Important: Synchronizing Threads

o Often threads need to be synchronized to keep them from 
getting in each other’s way.

o Synchronization helps resolve race conditions

o The simplest way is the critical/end critical directive

o There are others:
barrier directive
atomic directive
ordered/end ordered directive
lock routines in the runtime library

o Synchronizations might have the effect of slowing things 
down (by forcing threads to “wait”)



critical Regions

– Critical regions are executed by only one thread at 
a time, although all threads execute them

– They are created by a critical directive:

!$ omp critical

…block…

!$ omp end critical

– While one thread executes a critical region the 
others wait if they have nothing else to do



critical Regions
Start

End

do sth else

wait

“critical”

“critical”

“critical”

“critical”



Example: “All Slaves”

– In the “all slaves” model, a pre-determined number of 
tasks is given to threads whenever they are idle

– The distribution has to be done “one at a time”, using 
critical regions. The work itself is done in parallel

– A very similar effect is achieved by the dynamic 
scheduling within a parallel do loop.

– This is the shared-memory equivalent of the Master-Slave 
model in MPI, but because of the shared memory no 
master is needed.

Fortran Code Example Runs

docs/slaves.f90.pdf
docs/slaves.f90.pdf
docs/slaves.run.pdf
docs/slaves.run.pdf


Pool of 
tasks with 
counter

“All Slaves” parallel model

Slaves (multiple threads):

“Enter Critical”

“Leave Critical”

Get job



The Return of Mandelbrot

The timings in an all-slaves model, where each task corresponds to a given 
imaginary part, are virtually identical to a loop schedule (dynamic,1). Scaling is 
almost perfectly linear.

1 2 4 8

0

1

2

3

4

5

6

7

8

9

#procs

Rel. Perf (serial=1)

static loop

dyn loop

all slaves



Several critical Sections

– critical sections are global, i.e. at any one 
time only one thread can execute only one 
critical section

– If there is more than one, they can be named: 
!$omp critical (NAME)

– If they are named, only one thread can 
execute a specific critical section at a time, 
i.e. another can execute another 
simultaneously



barrier

● Works like a barrier in MPI: all threads 
must go pass it for anyone to continue

● Only makes sense within a parallel
region

● Usually placed between two separate 
sub-regions, one of which depends on 
the other



Parallel part ends, 

e.g. !omp end parallel

barrier “Pseudo Example”

Serial part, e.g. reading in data

Parallel part, with two distinct sections, 

e.g. !omp parallel

Computing elements of an array…

…synchronizing with !$omp barrier…

…and multiplying each element 

of the array with all the others.

Serial part, e.g. output of results



atomic

 Very similar in effect to critical region

 Applies to only one simple update of a scalar variable

 Makes use of hardware:
Reading, computing, writing are done within single clock 
cycle, so cycle is blocked

 Includes + - * / &(and) |(or)

 Preferable if expression is very simple
e.g. x++, y*=5, x(i)=x(i)/3



Using  atomic

…

!$omp parallel do

do i=1,n

…

!$omp atomic

x(index(i))=x(index(i))+1

…

end do

…

Fixing a race condition:

The loop is executed in parallel

If index is not unique, 

one thread might update x while 

another is using the old version

The atomic directive fixes that, making sure

that only one thread refers to x at a time.

Almost no overhead.



ordered / end ordered

● Sometimes it is necessary that operations in a parallel region 

are performed in the “original”, i.e., serial order

● Such operations can be enclosed in

!$omp ordered

…block…

!$omp end ordered

● This directive has the potential of adversely affecting the 

efficiency of the parallel region



ordered “Pseudo Example”

Serial part, e.g. reading in data

Parallel part begins, e.g. 
!$omp parallel do ordered

Computing elements of a vector…

…starting region: !$omp ordered

…printing the vector out properly…

…ending region: !$omp end ordered

…and doing some other stuff with the 

vector in parallel.

Serial part, e.g. output of final results

Parallel part ends, e.g. 
!$omp end parallel do



ordered Regions

● Ordering only applies to the enclosed block, 

not relative to statements outside of it, i.e.

the block statements are partly executed in parallel 

with others

● To minimize the impact of this construct, it is best to 

keep the enclosed blocks small, and preferably near 

the end of a parallel region

● Often ordered regions are used for I/O that needs 

to be done in a specific order



Explicit Locks

● Standard technique if several processes might want to access files 

or data

● Initialize/Finalize, Acquire/Release, and Test routines are available:

omp_init_lock(lock) [Initialize lock]

omp_destroy_lock(lock) [Finalize lock]

omp_set_lock(lock) [Acquire lock]

omp_unset_lock(lock) [Release lock]

omp_test_lock(lock) [Test lock]

● Also available in omp_*_nest_lock variety



Explicit Locks (cont'd)

● lock is a variable that can hold an address (Fortran), best integer 

(kind=omp_lock_kind)

● In C/C++ it’s a pointer of type *omp_lock_t

● Locks must be initialized/finalized outside a parallel region

● Locks must be shared

● After a thread has acquired (set) a lock, all others wait until it releases 

(unsets) it again

● The effect on the region between set/unset is similar to a named 

critical region, but the use is more flexible (for instance set in one 

routine and unset in another).



Explicit Locks (cont'd)

● Locks are often used if the setting and unsetting needs to happen in 

different areas of the code, e.g. in different routines.

● They are more flexible than critical regions, but harder to program, as 

they require code alteration.

● Use them only if you need to, in most cases critical regions are easier.

● In the following example we use them anyway (although a critical 

would do). In a later advanced example they must be used.



Explicit Locks: Example

call omp_init_lock(mini)

!$omp parallel do

do i=1,n

if(array(i).lt.smallest) then

call omp_set_lock(mini)   

if (array(i).lt.smallest)& 

smallest=array(i)

call omp_unset_lock(mini)

end if

end do

!$omp end parallel do

call omp_destroy_lock(mini)

Finding the smallest element in an array

Creating a lock
Starting the parallel region

Saving time: only if element is smaller
do we need to acquire the lock
Check again (might have changed),
and release the lock

End of parallel region,
Lock is not required anymore

Fortran Code Run with lock Run without lock

docs/OpenMP/minimum.f90.pdf
docs/OpenMP/minimum+.run.pdf
docs/OpenMP/minimum-.run.pdf


What to Do about False Sharing ?

● FS occurs only for shared arrays that are read/write

● If there is arrays that are modified by multiple 
threads which may have the same cache line, 
there is the possibility of FS

● This is only an issue if data updates are frequent

● Main symptom: Severely restricted scaling 
behaviour



False Sharing

Cache line in memory

Thread 1 Thread 2 Thread 3

Tim
e

read/update



Remedies

Antidotes for False Sharing include:

 “Privatization”

 “Think Big”

 Optimization

 Rescheduling

 Others

None of these is a silver bullet, although 
they can be very effective in some cases



“Privatization”

● Arguably the easiest way to alleviate the issue

● To reduce the number of times that a variable in 

an array needs to be updated, temporary private 

variables can be introduced

● This does not eliminate false sharing completely, 

but can greatly reduce it.



Example (from Sun Application Tuning Seminar example)

do i=1,100000

do j=1,100000

sum=sum+a(j,i)

end do

end do

Parallelization needs column

sum vector to avoid race 

condition on sum.

Sum over columns is later done 

in serial.

Version 1 (serial):

Sum over all matrix elements

OpenMP



!$omp parallel do

do i=1,100000

col(i)=0.

do j=1,100000

col(i)=col(i)+a(j,i)

end do

end do

do i=1,n

sum=sum+col(i)

end do

Elements of col get hit too often,

causing False Sharing

Version 2 (parallel):

Summing over column into 

vector col() in parallel

Single sum over col can be

done in serial

Privatization



!$omp parallel do private(coli)

do i=1,100000

coli=0. 

do j=1,100000

coli=coli+a(j,i)

end do

col(i)=coli

end do

!$omp end parallel do

do i=1,n

sum=sum+col(i)

end do

private variable coli reduces 

number of updates from n to 1, 

thus reducing false sharing

Version 3 (parallel, improved):

Vector col temporarily replaced

by private variable coli

Almost no false sharing

Finally, col gets hit only once



“Think Big”

● As False Sharing happens only when threads share 
cash lines, FS can be alleviated by reducing cache 
overlap

● This may be done in two ways:
Fewer threads (duh !) or larger data structures

● Often application scale better with problem size 
than with number of processors, i.e. it is easier to get 
twice the work done with two processors in the same 
time, than the same work with two processors in half 
the time.



Optimization

– Serial optimization often has the effect of 
alleviating false sharing

– For some machines, minimum optimization is 
enforced by the -openmp option anyway

– Forcing the alignment of data along “natural” 
boundaries improves cache coherence and is 
an optimization option for many compilers



Rescheduling

– Choosing larger chunk sizes when scheduling loops 

reduces cache overlap and therefore false sharing

– The default schedule might not be good

– It is necessary to experiment, as different schedules 

can sometimes yield better results for large numbers 

of threads, but worse for small numbers



Others

● Padding: Inserting “blank” data will separate data 
that are written in different threads, i.e. force them 
into different cache lines

● Alignment of data such that boundaries for threads 
coincide with boundaries for caches

● Re-copying data onto another structure that is more 
suitable for the access in the parallel loop. This is only 
good if the copying is much cheaper than the 
work/memory access in the loop

● Altering the loop, for instance by “blocking” will 
sometimes reduce false sharing



If Time Allows:

● Some General Considerations

● OpenMP 3.0

● Tasking

● Further Reading



Debugging/Profiling

● Debugging and profiling OpenMP
applications is harder than with serial 
programs

● Many modern debuggers (e.g. SUN xdb)  
can handle multiple threads

● The HPCVL Working Template handles 
multiple threads.



http://www.hpcvl.org

Parallel Principles

– Minimize repetition of heavy computations.

– Distribute simultaneous tasks among processes as evenly as possible, 

to reduce waiting time.

– Minimize memory conflicts, as they require protective regions which 

serialize the code. Use private or thread-private data if possible.

– Avoid close-by access to data because of the danger of false 

sharing. Common performance bottleneck.

Don't overdo: data locality is key to serial performance.

– If necessary, copy data into local (private) variables  to avoid 

memory problems.

– Parallelize outer loop rather than inner ones. This tends to space out 

memory access and reduces overhead.  



http://www.hpcvl.org

Parallelizing Serial Code

– Optimize serial code.

– Profile the code to determine which sections need 
parallelization (system tools, development tools, HWT).

– Introduce OpenMP framework into the code (header, 
compilation flags).

– Handle I/O: move I/O operations into serial regions, preferably 
Input at beginning, Output at end.

– Chose parallel method and parallelize “profitable” sections 
(new algorithm might be needed).

– Profile the code to determine scaling.

– Repeat the last two steps until meeting performance 
requirements.



Some Features of OpenMP 3.0

● OpenMP 3.0 was introduced in 2008

● Designed “by committee” with user input

● Support for previously unsupported types of parallelism, 
prominently “tasking” in while loops.

● Complete Specification at
http://www.openmp.org/mp-documents/spec30.pdf

● Quick reference at
http://openmp.org/wp/2009/03/openmp-30-fortran-summary-card/

http://www.openmp.org/mp-documents/spec30.pdf


OMP 3: General Features

● Tasking

● Waiting threads policies

● Loop collapse and nested parallelism

● Storage reuse

● Stack size control

● Multiple internal control variables



OMP 3: Language Features

– Fortran:

– Handling allocatable arrays

– C:

– Unsigned and pointer loop control variables

– C++:

– Constructors and destructors

– Iterator loops

– Enhanced threadprivate inside classes



Tasking

Remember “impossible while loop” earlier ?

Some of those can now be handled. 

Important example: Linked lists of tasks

task = first_task;

while (task != NULL){

execute(task);

task=new(task);

}

while Loop is implicitly dependent as it cannot 

be predicted when NULL will turn up.

However: 

Often new()workload is very small  compared 

to execute()workload.

Why not let one thread make a list of tasks 

while the others work on it?



Tasking

Encountering Thread adds task to 

Pending Pool.

All threads work down the tasks 

from the Pending Pool.



#pragma omp parallel

{

#pragma omp single private(task)

{

task = first_task;

while (task != NULL){

#pragma omp task

{execute(task);}

task=new(task);

}

}

}

Tasking Back to the example: 

Insert some OMP directives

task = first_task;

while (task != NULL){

execute(task);

task=new(task);

}



Tasking
Fortran:

!$omp task

!$omp end task

C/C++:

#pragma omp task

Designates a block of code that constitutes a task.

If used inside a parallel/single region, causes the

encountering thread to add a “possibly deferred”

task to a pool that can worked on by all threads in any 

order.



Tasking

Fortran:

!$omp taskwait

C/C++:

#pragma omp taskwait

Current task is suspended until all tasks generated 

within it are done (task barrier). Implicit or explicit

thread barriers also have this effect.



Collapsing Loops

Fortran:

!$omp parallel do collapse(n)

C/C++:

#pragma omp parallel for collapse(n)

Sometimes nested loops are very simple, and may be

“collapsed”, i.e. turned into a single loop which is then 

parallelized. n denotes the number of loop levels that 

are eliminated.



Combining MPI and Multithreading

● New chip architectures:

Multi-core & multi-threaded allow a single core (CPU) to 

execute multiple threads

● If used in cluster setting, makes use of OpenMP or Posix

threads combined with MPI desirable

● MPI library should be thread-safe, but don’t rely on it.

● Each of n MPI processes dynamically creates dynamically 

m threads per process for a total of N=nXm

● Will be discussed in more detail in MPI course



“Sum-of-Square-Roots” MPI/OpenMP Hybrid

– Remember the square-root example?

– Each process goes through different elements of the loop (MPI)

– Loop could be further distributed among threads, using OpenMP

Code in Fortran

Code in C++

Code in C

docs/mix.f90.pdf
docs/mix.cpp.pdf
docs/mix.c.pdf


Further Reading

– OpenMP website: www.OpenMP.org

– Chapman et al. Using OpenMP

– Chandra et al. Parallel Programming in OpenMP

– MJ Quinn Parallel Programming in C with MPI and OpenMP

http://www.OpenMP.org/
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11387
http://www.elsevier.com/wps/find/bookdescription.cws_home/677929/description#description
http://www.mhprofessional.com/product.php?isbn=0072822562


Thanks for 

Your Attention


