
Introduction to Julia

Gang Liu, Hartmut Schmider

gang.liu@queensu.ca, hartmut.schmider@queensu.ca

CAC, Queen's University

Summer School, Compute Ontario

2017

1

Overview
• Some backgrounds
• Starting with Julia's shell
• Basic types, variables, operations
• Conditional branches
• Repeating constructs
• Functions
• Application example: 𝜋 calculation of many digits
• Collection types and user defined types
• Input, output, and external files
• Type hierarchy, immutability, and parametric types
• Variable scopes, modules, and exception handling
• More features

2

Some backgrounds

3

Today's computers

• are very powerful and clever

• e.g. can help doctors to diagnose patient's problems (IBM Watson)

• e.g. can win world top players in board game GO (AlphaGo)

• however, machines/mechanics

• always need instruction to do next

• the instructions must be accurate, detailed, and complete

• computer code is for that purpose.

4

Programming/coding principle

• Logical

• Then feasible, no conflicts, no ambiguity.

• E.g. not cooking and playing volleyball at the same time.

• E.g. in a many-road intersection, can not ask one to walk some steps
without indicating direction.

• E.g. not try to present your "fourth" apple to your friend when you
have only three.

• E.g. not try to divide 92 by "Please accept this cruise for our
anniversary!"

5

How to learn coding

• Testing

• Testing

• And testing …

6

Computers of bits

• Almost everything in computers is bit or bits.

• Each bit can be imagined as a simple circuit with current running or not,
two states only.

• Normally the two states are represented with 0 and 1.

• Then do you mean a computer can only describe two states?

• No. Each bit can do that. But we have many many bits.

• E.g. 01011101100010001 may mean "I love you!"

• Actually unlimited number of bits can express anything.

• All data and code instructions are bits.

• And anything computers do is on bits essentially.

7

Minimum working unit in computers

• Not simply one bit, but

• 8 bits

• Called one BYTE.

• This means whatever you do anything, one or more BYTEs will be
used.

8

What we get when we buy a computer?

9

Computer key parts

• CPU. E.g. AMD A9-9410 2.9GHz

• Memory. 8GB is about 8,000,000,000 BYTES

• Hard disk: 1TB is about 1,000,000,000,000 BYTES

Accurately

1KB = 2^10 BYTES = 1024 BYTES

1MB = 2^10 KB = 1024 KB

1GB = 2^10 MB = 1024 MB

1TB = 2^10 GB = 1024 GB

1PB = 2^10 TB = 1024 TB

10

A sketch of computer structure and data flow

Hard diskHard disk

Main

Memory

CPU

Core Cache

CPU/Core can operate data only in cache at fixed frequency. Much
additional time is spent in data transporting between the main memory
and the cache. Fully making use of cache capacity reducing data movement
between main memory and cache is critical for performance improvement.

I/O

11

Data and code

• are stored in hard disks as files in certain format.

• Files are placed in a hierarchy of directories.

• Although everything is bits/BYTEs, some files are stored in a way such
that the BYTEs can be converted into characters, letter, numbers,
and/or other symbols, then readable to people. Called text files.

• Other files are just bits, not indented to be converted. Called binary
files. People can not read binary files. Meanwhile, computers can not
run based on text files, but based on instructions in some binary files,
called executable. Not all binary files are executable, e.g. movie data
files.

12

Computer languages

• Rules and facilities for writing (source) codes in text files, eventually
converted into executable binaries to instruct computers what to do.

• Although they were created like natural languages as much as
possible, their rules (syntax/grammar) are applied absolutely strictly.
Any violation will be refused.

• There are a great number of computer languages.

• For application, especially computing/data science, high-level
programming languages fall into two categories.

• Interpreted and compiled languages.

13

The difference

• In interpreted languages, like R, Python, and Matlab,
one or more lines of source code is (are) converted
into binary then executed. Then another section of
source code. This procedure is repeated till end. Then
computation is interrupted by conversions.

• In compiled languages, like C and FORTRAN, the
whole source code is compiled into a big executable
binary code. The compiled binary code can be run
repeatedly later, forgetting the source code.

14

The difference

Post office Post office

houseshouses houses

15

The difference

Post office Post office

houseshouses

The interpreted, like a postman on the left, needs to go back
and forth to deliver letters. The compiled (on the right) can
deliver all together and further optimize since knows all tasks.

16

So

The compiled ones usually run much fast than the
interpreted ones.

17

Advantage

The interpreted is more automatic, easier to use.

The compiled need more details to be coded with
more care.

18

19

IS

the only combination of the interpreted and
compiled languages.

It can be coded as easy as interpreted ones and
run as fact as compiled ones.

20

pretty young

Developed by Jeff Bezanson, Stefan Karpinski, and
Viral B. Shah, under supervision of Prof. Alan
Edelman at MIT from 2009.

First presented publicly on Valentine's Day, 2012.

Free, open source with MIT license.

21

Starting with Julia's shell

22

Julia's shell

23

Julia's shell

24

Julia's shell
• The shell or REPL (Read-Evaluate-Print-Loop) or let us call it Command-line

interface, is Julia's basic working environment, where you can interact with
Julia's Just-in-time compiler to run your code piece by piece.

• You can type your code (expression) in "Julia>" prompt and press the ENTER
key, then Julia should evaluate your expression and show.

• If you do not want your evaluated expression shown in the screen, type ";" ,
like 5+3;

• So many lines can be put into one line separated with ";", then the last result
with be shown.

• You can exit it with (CTRL)+D keys or input quit().

• Test some: a=4 ans b=9 ans a+b ans c="No alcohol when driving" ans

25

Julia's shell

• Previous expressions can be retrieved with up and down array keys,
then changed to get a new one.

• To clear or interrupt a current expression, press (CTRL)+C

• To clear the screen (but variables are kept in memory), press (CTRL)+L

• To reset the session so that variables are cleared, enter the command
workspace()

• To search previous commands, press (CTRL)+R

26

Julia's shell

• Type ? to enter help mode help?> sort

• Julia> help(sort)

• propos("sort")

• Julia> so(TAB)(TAB)

27

Julia's shell

• ; to enter a system shell

• ;ls

• ;cd

• ;mkdir

• ;whoami

• ;pwd

28

Julia's shell

• To execute an existing Julia code

• Julie> include("d:/MyDirectory/myfolder/…/MyCode.jl")

29

Julia's comment lines

• To write something like notes, comments, for any purpose other than
programming.

• After "#" in the line (anything before it is still code).

• # This is the best movie I have ever watched.

• # I am willing buy a ticket for my girl friend.

30

• price = 5000000 dollars

Basic Types, Variables, and Operations

31

Types

• 2

• 8.4,

• "Queen's University is in Kingston, a beautiful place. " # are some values.

• Each has a (data) type. "typeof()" function tells us the type

• typeof(1)

• typeof(1.0)

• typeof("1.0")

• typeof("Kingston is in Ontario. ")

• typeof(true)

32

Types

• Why are types?

• Each type was defined, so that a reasonable amount of bits or BYTEs
allocated in memory to store such values with certain format.

• The most frequently used basic types in Julia are

• Int64

• Float64

• String

• Bool

33

Int64

• is for one integer.

• has 64 bits (8 BYTEs) in memory.

• one bit is used for sign, maybe 1 meaning +, 0 for -.

• the rest 63 bits are for the actual integer absolute value.

• the maximum positive value can be stored is 2^63 -1 = 9,223,3…,807

• can also be acquired by typemax(Int64) function call.

• If no negative allowed (the bit for sign also used for value), the
corresponding type is called UInt64.

34

UInt64

• is for one non-negative integer.

• has 64 bits (8 BYTEs) in memory.

• the maximum value can be stored is 2^64 -1 = 18,446,…, 1,605

• can also be acquired by typemax(UInt64) function call.

35

Other built-in integer types

• Int8, Int16, Int32, Int128:

• Int128(3)

• typeof(ans)

• UInt8, UInt16, UInt32, UInt128:

• a=UInt128(3)

• typeof(ans)

• If all these types can not satisfy you, BigInt, which is supposed to hold
unlimited big integer.

• BigInt(9)

• typeof(ans)

36

Float64

• is for one float number: 1.0, 2. 234323.9, 7.89234e72 .

• has 64 bits (8 BYTEs) in memory.

• one bit for the value sign.

• another bit for the sign of power.

• some bits for power.

• all the rest bits are for the absolute value.

• typemax(Float64)

37

Other built-in floating point types

• Float16, Float32

• No UFloat types

• BigFloat is defined, supposed for unlimited big floating point
numbers, although actually maybe still limited.

38

Special values

• Inf (positive infinit)

• -Inf (negative infinit)

• NaN (not a number)

• a = 5.0^5

• a = a * a #repeat it

39

Variables
• Values of types are stored in memory when Julia is running.

• In order to retrieve them, variables are used.

• Variables can be regarded as a name or an ID for one or a group of values.
Their types are defined as those of the values they represent.

• Variables are associated with values by assignment statement:
a = Int32(4) b = Float32(2.0) a b a + b c = a + b

• Variables are case sensitive, typically lower case words separated by
underscores.

• Variables must start with a letter and after that letters, digits, underscores,
and exclamation points can follow in any combination:
aaa, ddd, g, h, m8, spead_of_light, spead_of_light02, my_ spead_of_light

• Once defined, can be used as values.

40

Basic operations on numbers
• a = 3
• b = 4.8
• c = a + b
• c = a - b
• c = a * b
• c = a / b
• c = a ^ b
• d = sqrt(a)
• d = exp(b)
• d = sin(a)
• 2+3*5
• (2+3)*5

41

By default, operations on different types will
automatically convert all values into a
reasonable common type, then operate, since
operations can only on the same types
internally.

Reasonable precedence enabled (test to learn
details). Always use parentheses () to enforce
precedence whenever not 100% sure.

Bool type

• true or false

• a = 3

• b = 4

• a < b

• a == b

• c = a == b

• c = (a == b)

• typeof(c)

42

Bool type
• Data comparison:
• 2==3
• 2 !=3
• 2 < 3
• 2 > 3
• 2 >= 3
• 2 <= 3
• Bool operations: &&, ||, !
• (5<3) && (4.0<8)
• (5<3) || (4.0<8)
• !true
• !false

43

String type
• str0 = "Volleyball is a sport and an entrainment."
• typeof(ans)
• Each letter can be retrieved with an index from 1 to end:
• str0[1]
• str0[2]
• str0[10]
• str0[end]
• str0[10]='g'
• Strings are immutable: any element can not be changed once created,

although the variable can be assigned with anything else (then it has
nothing to do with the old whole string).

44

String operations

• str0 = "Volleyball is a sport and an entrainment."

• str1 = search(str0, "sport")

• str1 = replace(str0, "Volleyball", "Hocky")

• str0

• str0 = replace(str0, "Volleyball", "Hocky")

• str0

• str1 = split(str0, ' ')

• str1 = str0* " Sorry, I missed the game yesterday, due to a flat tire."

45

Char type

• 'A' (only one letter with a single quote). Typeof(ans)

• If double quote like "A", it is a String type.

• Char can be converted into an integer (position in ASCII table) back
and forth. Int('g') , Char(103)

• Any single letter can be defined and used as a Char or a single
element String, which are different types.

• Char arrays can be converted into Strings with join() function call.

46

Complex type and Rational type

• are also defined as built-ins.

• (1+2im)*(3-4im)

• a = 8//3

• a * 5

• a/3

• numerator(a)

• denominator(a)

47

Since memory of computers
• is a great amount of bits/BYTEs but bits/BYTEs only,

• programming in any language must deal with types to save data there.

• In Julia, as in other modern interpreted languages, we can
a = 0.5 , later a = "Newton likes apples, so do I."

• This means Julia manages types for us automatically, and even allows types
change automatically.

• In C/FORTRAN, any given variable must be declared as a certain type before
being used, and the type can no longer be changed.

• Later we will show that Julia further allows us to use types as something
like assignable variables.

48

Julia
• is such a high level computer language, that programmers can

completely forget types, letting Julia does everything on this respect;

• is such a high level computer language, that programmers can
completely operate on types as variables.

49

Conditional branches

50

Conditional branches
• It allows us to code sections of code to be executed under conditions.

• Most cases, different conditions execute different part/path of code.

• The general form

• if condition1

• (do some things accordingly)

• elseif condition2

• (do some other things accordingly)

• elseif condition3

• (do some other things accordingly)

• elseif …

• (do some other things accordingly)

• else

• (do other things accordingly)

• end

• All elseif and else constructs are optional and no limit on number of elseif constructs.

51

Conditional branches
• An example

• var = 5

• if var > 10

• println("var has value $var and bigger than 10. ")

• elseif var < 10

• println("var has value $var and smaller than 10. ")

• else

• println("var has value $var and is 10. ")

• end

52

Conditional branches
• Another example

• a = 5; b = 9

• z = if a > b a

• else b

• end

• This short if structure can also be written as

• z = a > b ? a : b

53

Conditional branches
• if (condition) (statement) end

• can be written

• (condition) && (statement)

• For example if (a<0) println("Sorry, a is negative: $a") end

• (a<0) && println("Sorry, a is negative: $a")

• Similarly, if !(condition) (statement) end

• can be written

• (condition) || (statement)

54

Conditional branches
• can be unlimited nested.

• Example
• if my_dad_is_at_home
• (my dad will cook)
• else
• if my_mom_is_at_home
• (my mom will cook)
• else
• (I will cook)
• end
• end

55

Repeating constructs

56

If you have

• log(2.0) + log(3.0) + log(4.0) + log(5.0) + … + log(10000000000.0)
to calculate,

• you would absolutely not like to write all such operations one by one.

• Loops are for such repeated works and can make life much easier.

57

The for loop
• takes a form of

• for i = beginning : ending

• (do something)

• end

• Example

• for a = 2001 : 2017

• println(a, " is a year of this centrury. ")

• end

58

The for loop
• takes a form of

• for i = beginning : ending

• (do something)

• end

• Example

• s = 0.0

• for i = 2 : 10000

• lll = log(i)

• s = s + lll

• end

• s
59

The for loop
• can take another form of

• for i = 1 : length(a_collection)

• (do something)

• end

• Example

• c = "What a beautiful day!"

• for ii = 1 : length(c)

• println("The $ii-th element of the collection is ", c[ii], " . ")

• end

60

The for loop
• can take another form of

• for e in (a_collection)

• (do something)

• end

• Example

• c = "What a beautiful day! "

• for ee2 in c

• println(ee2)

• end

61

The for loop
• can take another form of

• for (i,e) in enumerate(a_collection)

• (do something)

• end

• Example

• c = "What a beautiful day! "

• for (ii, ee2) in enumerate(c)

• println("The $ii-th element of the collection is $ee2 . ")

• end

62

The for loop

• str0 = "Volleyball is a sport and also an entrainment. "

• for elmt in split(str0, ' ')

• println(elmt)

• end

63

Loops can always be unlimited nested
• for n1 = 1:5

• for n2 = 1:5

• println("The multiplication of $n1 and $n2 is $(n1*n2) . ")

• end

• end

• Or (I do not like it)

• for n1 = 1:5, n2 = 1:5

• println("The multiplication of $n1 and $n2 is $(n1*n2) . ")

• end

64

The while loops
• while condition_is_true
• (do something)
• (usually the condition is updated, so that the condition false

sometime later)
• end

• Example
• a = 10; b = 15
• while a < b
• println("$a, $b . ")
• a +=1 # a = a +1
• end

65

The while loops
• Please also try

• a = 15; b = 15

• while a < b

• println("$a, $b .")

• a +=1 # a = a +1

• end

66

A typical usage of the while loops
• (initialize some data including setting ccc = true)

• while ccc

• (do some things)

• (check if everything is good enough setting ccc = false)

• end

67

break statement
• A loop will be terminated when a break statement is met.

• a = 15; b = 1500

• while a < b

• println("$a, $b .")

• a +=1

• if a > 20 break end

• end

68

break statement
• A loop will be terminated when a break statement is met.

• a = 15; b = 1500

• while true

• println("$a, $b .")

• a +=1

• if a > 20 break end

• end

69

continue statement
• will skip all the rest statements in the current iteration.

• for n in 1 : 20

• if n <= 15 && n >= 5

• continue

• end

• println("I like $n .")

• end

70

continue statement
• Another example for even numbers
• for n = 1 : 20
• if isodd(n)
• continue
• end
• println("$n is even.")
• end

• The same effect
• for n = 2:2 : 20
• println("$n is even.")
• end

71

Range

• for n = 1 : 3 : 40 # start : step : end

• println(n)

• end

72

Functions

73

Nowadays, people do everything step by step

74

Programming is not an exception
• A big computational task is usually cut into many smaller ones.

• With input and output assumed to some degrees, what and how to
complete the inside of each smaller task is usually independent on
any other smaller tasks. In other words, the inside is encapsulated.

• Functions are used for such smaller tasks or steps.

• Normally when we code functions, we can focus on the specific small
task, forgetting the whole big complicated task.

• Functions can be unlimitedly re-used and make code well structured.

• We already saw many built-in functions:
typeof(a), Int64(2), sin(x), replace(aa, "…", "…"), println("…")

• Let us try to write our own functions.
75

The general form of functions

function function_name(argument_list)

• # function body (statements)

• return (values_or_variables)

• end

76

Function example

function myfunc_01(x, y)

• println("For $x and $y, the result is: ")

• return x + y^3

• end

• myfunc_01(3,2)

77

Function example

function myfunc_01(x, y)

• println("For $x and $y, the result is: ")

• return x + y^3

• end

• myfunc_01(3,2)

• x

• y #arguments are “temporary variables”, disappeared when exited.

78

Function names can be assigned to others

function myfunc_01(x, y)

• println("For $x and $y, the result is: ")

• return x + y^3

• end

• aaa = myfunc_01

• aaa(3,2)

79

Function example

function myfunc_02(x, y)

• println("For $x and $y, the result is: $(x+y^3). ")

• x, y, x + y^3

• end

• a,b,c = myfunc_02(3,2)

• a

• b

• c

80

Function example

function myfunc_03(x, y)

• println("For $x and $y, the result is: $(x+y^3). ")

• if y == 0

• return x

• end

• x + y^3

• end

• myfunc_03(3,0)

81

Function with arbitrary number of arguments

function myfunc_04(x, y, argus ...)

println("x: $x, y: $y, argus: $argus")

for a in argus

println(a)

end

end

• a = 4; b = 7; c =12 ; myfunc_04(3, 0, a, b, c)

82

Function with arbitrary number of arguments

function myfunc_05(x, y, argus ...)

println("x: $x, y: $y, argus: $argus")

if length(argus) >0

println(argus[1], " first and last ", argus[end])

end

end

• a = 4; b = 7; c =12 ; myfunc_05(3, 0, a, b, c)

83

Compact form of function with one line in the body

function myfunc_06(x, y, z)

• x + 3y^3 + 6z^4

• end

• can be written as

myfunc_06(x, y, z) = x + 3y^3 + 6z^4

84

Anonymous function
function (x, y, z)

x + 3y^3 + 6z^4
end

can be written as
(x, y, z) -> x + 3y^3 + 6z^4
ans(3, 4, 5)

If only one argument
x -> 3 + 4x + 82x^2 + 92x^3
ans(3)

If no argument
() -> println(5678)
ans()

85

Anonymous function can be named
(x, y, z) -> x + 3y^3 + 6z^4

ans(3, 4, 5)

myfunc_07 = (x, y, z) -> x + 3y^3 + 6z^4

Or

myfunc_07 = function (x, y, z)

x + 3y^3 + 6z^4

end

myfunc_07(3, 4, 5)

86

Optional arguments with default values

myfunc_08 = (x, y=2) -> x + y^3

• myfunc_08(3,0)

• myfunc_08(3)

• myfunc_08(3,2)

• myfunc_08(3,3)

87

Keyword arguments
Up to now, all arguments are defined by sequential positions. After

them, a semicolon (;) can be placed, then optional keyword arguments can
be defined with default values. Keyword arguments can be in any order
when calling such a function.

myfunc_09 = (x; y=4 , z=2) -> x + 3y^3 + 6z^4

myfunc_09(1)

myfunc_09(1; y=4, z=2)

myfunc_09(1; z=2, y=4)

myfunc_09(1, z=2, y=4)

myfunc_09(1, z=2)

myfunc_09(z=2, 1)

myfunc_09(y=4, 1, z=2)

88

Functions can accept functions as arguments
function numerical_derivative(f, x, dx=0.01)

derivative = (f(x+dx) - f(x-dx))/(2.0*dx)

return derivative

end

• h = x -> 2x^2 + 30x + 9

• numerical_derivative(h, 1, 0.001)

• Or

• numerical_derivative(x -> 2x^2 + 30x + 9, 1, 0.001)

89

Functions can also contain and call function(s)

function layered1(x)

• h=x->5x

• return 2x+3+h(x)

• end

• layered1(2)

90

Functions can also contain and return function(s)

function layered2(f)

• return function(x)

• return 2x+3+f(x)

• end

• end

• h=x->5x

• layered2(h)

• layered2(h)(2)

91

function layered3(f)
• return function(x)
• return function(y)
• return 2x+y+f(x)
• end
• end
• end

• h=x->5x
• layered3(h)
• layered3(h)(2)
• layered3(h)(2)(3)

92

Functions can also contain and return function(s)

Interesting anonymous functions returned

function counter()

n = 0

() -> n += 1, () -> n =0, () -> n

end

(addOne, reset, theValue) = counter()

n

reset()

addOne()

addOne()

theValue()

addOne()

reset()

addOne()

93

Please note that n is only accessible to reset(),
addOne(), and theValue(). Called closures.
More interesting:
(addOne2, reset2, theValue2) = counter()
addOne()
addOne2()
addOne()
addOne2()

Recursive functions

function factorial(n)

if n == 1

return 1

else

n * factorial(n-1)

end

end

factorial(5)

94

As you see
f3 = (x, y, z) -> x + 3y^3 + 6z^4

f3(3, 4, 5)

• the types of most variables in functions are not defined.

• When the function is called, the types of all argument are given, then
types of all variables in the function are derived.

• In this procedure, Julia compiler will write a specific function code for
the concrete types of the actual arguments passed in, based on the
"general function" you wrote, then run it. Your function is actually a
framework.

• This a great advantage of Julia over almost all other languages.

• However, this is slow. Better to specify types in your functions.

95

Type specifications in functions

function factorial(n::Int64) :: Int64

if n == 1

return 1

else

n * factorial(n-1)

end

end

factorial(3)

f3 = (x::Int64, y::Int64, z::Int64) -> (x + 3y^3 + 6z^4) :: Int64

f3(3, 4, 5)

96

Application example:

𝜋 calculation of many digits

97

𝜋 calculation based on half circle

98

𝜋 =
ℎ𝑎𝑙𝑓_𝑐𝑖𝑟𝑐𝑙𝑒

𝑟

𝜋 calculation based on half circle

99

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

100

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

101

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

102

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2

𝜋 calculation based on half circle

103

𝜋 =
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2

function new_chord(old_chord)

h = old_chord / 2

hsq = h * h

v1 = sqrt(1.0 - hsq)

v2 = 1.0 - v1

return(sqrt(hsq + v2*v2))

end

𝜋 calculation based on half circle

104

𝜋 =
σ 𝑐ℎ𝑜𝑟𝑑𝑠

𝑟
r=1.0

function new_chord(old_chord)

h = old_chord / 2

hsq = h * h

v1 = sqrt(1.0 - hsq)

v2 = 1.0 - v1

return(sqrt(hsq + v2*v2))

end

accuracy = 1.0e-12

• number_of_chords = 2.0

• old_chord = sqrt(2.0)

• pi = old_chord * number_of_chords

• old_pi = pi

• while true

• number_of_chords = number_of_chords * 2.0

• old_chord = new_chord(old_chord)

• old_pi = pi

• pi = number_of_chords * old_chord

• relative_error = abs(pi-old_pi)/pi

• if relative_error < accuracy

• println("My PI: $pi to the accuracy: $accuracy.")

• break

• end

• end

𝜋 calculation for higher accuracy

105

𝜋 =
σ 𝑐ℎ𝑜𝑟𝑑𝑠

𝑟
r=1.0

function new_chord(old_chord)

h = old_chord / 2

hsq = h * h

v1 = sqrt(1.0 - hsq)

v2 = 1.0 - v1

return(sqrt(hsq + v2*v2))

end

accuracy = 1.0e-70

• number_of_chords = 2.0

• old_chord = sqrt(2.0)

• pi = old_chord * number_of_chords

• old_pi = pi

• while true

• number_of_chords = number_of_chords * 2.0

• old_chord = new_chord(old_chord)

• old_pi = pi

• pi = number_of_chords * old_chord

• relative_error = abs(pi-old_pi)/pi

• if relative_error < accuracy

• println("My PI: $pi to the accuracy: $accuracy.")

• break

• end

• end

𝜋 calculation for higher accuracy

106

function new_chord(old_chord::BigFloat)

h = old_chord / BigFloat(2.0)

hsq = h * h

v1 = sqrt(BigFloat(1.0) - hsq)

v2 = BigFloat(1.0) - v1

return(sqrt(hsq + v2*v2))

end

𝜋 calculation for higher accuracy

107

accuracy = 1.0e-70

• number_of_chords = 2.0

• old_chord = sqrt(2.0)

• pi = old_chord * number_of_chords

• old_pi = pi

• while true

• number_of_chords = number_of_chords * 2.0

• old_chord = new_chord(old_chord)

• old_pi = pi

• pi = number_of_chords * old_chord

• relative_error = abs(pi-old_pi)/pi

• if relative_error < accuracy

• println("My PI: $pi to the accuracy: $accuracy.")

• break

• end

• end

𝜋 calculation for higher accuracy

108

accuracy = BigFloat(1.0e-70)

• number_of_chords = BigFloat(2.0)

• old_chord = sqrt(BigFloat(2.0))

• pi = old_chord * number_of_chords

• old_pi = pi

𝜋 calculation for higher accuracy

109

i = 1
• while true
• number_of_chords = number_of_chords * BigFloat(2.0)
• old_chord = new_chord(old_chord)
• old_pi = pi
• pi = number_of_chords * old_chord
• println("$i : $pi ")
• relative_error = abs(pi-old_pi)/pi
• if relative_error < accuracy
• println("My PI: $pi to the accuracy: $accuracy.")
• break
• end
• i = i + 1
• end

𝜋 in wiki
• https://en.wikipedia.org/wiki/Pi

• The first 50 decimal digits are
3.14159265358979323846264338327950288419716939937510

110

Collection types and user defined types

111

Collection types and user defined types

• In real calculations, we will meet a great amount of data.

• To manage them reasonably is necessary for a successful work.

• Collection types and user defined types are for that purpose.

112

Vectors and matrixes

store a sequence of values of the same type (called elements), indexed
by the sequential integer number starting from 1.

113

Vectors and matrixes
• a = [1, 2, 3]

• a[2]

• a2 = [1; 2; 3]

• a == a2

• b = [1 2 3]

• b[2]

• b == a2

• c = a * b

• c[2,3]

• d = b * a

• h = [1 2; 3 4]

• h[2, 3]

• g = h * h

• g[2, 3]

114

Vectors and matrixes
• To create a 3 by 5 matrix of random floating numbers between 0 and 1:

• a = rand(3, 5)

• Or

• b = rand(Float64, 3, 5)

• c = rand(Int64, 20)

• d = rand(Int64, 7, 10)

• d[1, 1]

• d[1, 2]

• d[1, 3]

• d[1, 10]
115

Vectors and matrixes

• a = Float64[]

• b = Array{Int64}(8)

• c = linspace(0, 10, 11)

• c[3]

• d = Float64[x^2 for x in 1:4]

• g = [x for x in 1:8]

• h = [x^3 for x in 1:5]

• table = [x*y for x in 1:10, y=1:10]

• stable = [sin(Float64(x+3y)) for x in 1:4, y=1:3]

116

Vectors and matrixes

• b = Array{Int64}(8)

• for j = 1: length(b)

• b[j] = 10+j

• end

• b

• b[3:7]

• b[3:7]=[45,46,47,48,49]

• b

b[2:end]

117

Vectors and matrixes

• a = [x for x in 1:6]; a

• b = [x+12 for x in 1:3]; b

• pop!(a); a

• push!(a, 1080) ; a

• c = append!(a,b)

• sort(a)

• a

• sort!(a)

• a

• join(a, '-')
118

• shift!(a)

• unshift!(a, 36)

• splice!(a,3); a

• in(36, a)

• in(78, a)

• for elm in a

• println(" $elm ") end

Vectors and matrixes

• c = [1, 2, 4, 8, 16]

• d = c

• d[3] = -9

• d

• c

119

• c = [1, 2, 4, 8, 16]

• d = deepcopy(c)

• d[3] = -9

• d

• c

Vectors and matrixes

• a = rand(3, 5)

• ndims(a)

• size(a, 1)

• size(a, 2)

• a[:, 2]

• a[2, :]

• a[2:end, 2:end]

• b = eye(4)

120

Vectors and matrixes

• To make an array of arrays

• a = fill(Array(Int64, 1), 3)

• a[1] = [1,2]

• a[2] = [2,3,4]

• a[3] = [8,9,10,70]

• a

121

Vectors and matrixes

• To transpose an array

• a = [1 2; 3 4]

• b = a'

• Or

• c = transpose(a)

• c == b

122

Vectors and matrixes

• The inverse

• a = [1 2; 3 4]

• b = inv(a)

• b * a

• a * b

123

Vectors and matrixes

• Concatenations

• a = [1 2; 3 4]

• b = [5 6; 7 8]

• c = [a b]

• c = [a ; b]

• c = [a , b]

• hcat(a, b)

• vcat(a, b)

124

Vectors and matrixes

• Element-wise operations

• a = [1 2; 3 4]

• b = [2 2; 2 2]

• a * b

• a .* b

• b .* a

• a .+ b

• a .- b

125

Vectors and matrixes

• map(function, array) applies the function on elements

• a = [1 2 3; 4 5 6]

• map(x-> x^3, a)

• Other forms

• map(x-> begin

• if iseven(x) return 2

• else return 1

• end

• end , a)

126

• map(a) do x

• if iseven(x) return 2

• else return 1

• end

• end

Vectors and matrixes

• filter(function, array) only returns elements if the function evaluated
true.

• a = [1 2 3; 4 5 6]

• filter(x-> x>4, a)

127

Tuples

• A group of values separated by commas, surrounded by parentheses ().

• The types can be the same or different.

• Any value of it can not be changed, as tuples are immutable.

• a, b, c, d = 2, 3.5, "good news", 'y'

• a

• b

• c

• d

128

Tuples

• a = 2, 3.5, "good news", 'y'

• for i = 1: length(a)

• println(a[i])

• end

• a[end]

129

• a = (2, 3.5, "good news", 'y')

• for i in a

• println(i)

• end

• a[end]

Dictionaries
For values indexed with unique keys.

• Collection of (key => value) pairs separated by commas.

• a = Dict([:A => 200, :B => 40])

• a[1]

• a[:A]

• a[:B]

• a[:B] = 80

• a[:C] = 90

• a # values can be changed.

• keys(a)

• values(a)
130

Dictionaries

• a = Dict(:A => 200, :B => 40, :C => 95)

• for (k,v) in a

• println(k, ' ', v)

• end

• for k in a

• println(k[1], ' ', k[2])

• end

131

Sets

• s1 = Set([2, 4, 8, 4, 5, 8, 8])

• s2 = Set([2, 14, 15, 4])

• union(s1, s2)

• intersect(s1, s2)

• setdiff(s1, s2)

• setdiff(s2, s1)

• issubset(s1, s2)

• issubset(intersect(s1,s2), s2)

132

User defined types
• type Point

• x::Float64

• y::Float64

• z::Float64

• end

• Point(2.0, 4.0, 5.0)

• a = Point(2.0, 4.0, 5.0)

• a.x

• a.y

• a.z

• a.y = 0.8

• a

133

User defined types
• immutable Point2

• x::Float64

• y::Float64

• z::Float64

• end

• Point2(2.0, 4.0, 5.0)

• a = Point2(2.0, 4.0, 5.0)

• a.x

• a.y

• a.z

• a.y = 0.8

• a

134

Input, output, and external files

135

Input, output, and external files
• a = readline()

• Hello!

• a

• a = readline(STDIN)

• Hello again!

• a

• println("A nice Summer! ")

136

Input, output, and external files
• Student , gender , age , weight , hight , grade
• First , boy , 17 , 63.4 , 178.4 , 11
• Second , girl , 16 , 50.3 , 165.2 , 10
• Third , girl , 15 , 47.6 , 155.3 , 8

• myfile = open("c:/tmp/data.csv")
• i = 0
• while !eof(myfile)
• a = readline(myfile)
• i += 1
• println(" Line # $i is: $a ") end
• close(myfile)

137

Input, output, and external files
• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• myfile = open("c:/tmp/data.csv")

• myoutputfile = open("c:/tmp/out.csv", "w")

• while !eof(myfile)

• a = readline(myfile)

• println(myoutputfile, a)

• end

• close(myfile)

• close(myoutputfile)

138

Input, output, and external files
• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• myfile = open("c:/tmp/data.csv")

• myoutputfile = open("c:/tmp/out.csv", "a")

• while !eof(myfile)

• a = readline(myfile)

• println(myoutputfile, a)

• end

• close(myfile)

• close(myoutputfile)

139

Reading CVS files
• CVS files are of lines with data separated by commas (or other fixed and

unique delimiters like ";").

• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• myfile = open("c:/tmp/data.csv")

• data = readdlm(myfile)

• close(myfile)

140

Reading CVS files
• myfile = open("c:/tmp/data.csv")

• # data = readdlm(myfile, ';' , Float64, '\n', header=true)

• data = readdlm(myfile, ',' , Any, '\n', header=true)

• close(myfile)

• data

• data[1]

• data[2]

• data[1][2,3]

• data[1][2,3] = 12.9

• data[1][2,3]

• data[2][3]

• dd = map(Float64, data[1][:, 3:end])

• dd

141

Reading and writing CVS files
• myfile = open("c:/tmp/data.csv")

• # data = readdlm(myfile, ';' , Float64, '\n', header=true)

• data = readdlm(myfile, ',' , Any, '\n', header=true)

• close(myfile)

• myoutfile = open("c:/tmp/out2.csv", "w")

• write(myoutfile, join(data[2], ';'), "\n")

• for i = 1: size(data[1],1)

• write(myoutfile, join(data[1][i,:], ';'), "\n")

• end

• close(myoutfile)

142

Reading and writing CVS files

• myfile = open("c:/tmp/out2.csv")

• data2 = readdlm(myfile, ';' , Any, '\n', header=true)

• close(myfile)

• data == data2

143

Reading and writing DataFrames

• The most natural representation of data. Here is a good example:

• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• Pkg.add("DataFrames")

• using DataFrames

• myfile ="c:/tmp/data.csv"

• data = readtable(myfile, separator=',')

• writetable("c:/tmp/out3.csv", data)

• data3 = readtable("c:/tmp/out3.csv", separator=',')

• data == data3

144

Reading and writing DataFrames
• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• using DataFrames

• data = readtable("c:/tmp/data.csv", separator=',')

• data[:hight]

• data[:hight][2]

• data[5][2]

• data[2, 5]

• data[:hight][2] = 2588.64

• data

145

Reading and writing DataFrames
• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• using DataFrames

• data = readtable("c:/tmp/data.csv", separator=',')

• typeof(data)

• size(data)

• head(data)

• tail(data)

• names(data)

• eltypes(data)

describe(data)

146

DataFrames constructor
• Student , gender , age , weight , hight , grade

• First , boy , 17 , 63.4 , 178.4 , 11

• Second , girl , 16 , 50.3 , 165.2 , 10

• Third , girl , 15 , 47.6 , 155.3 , 8

• using DataFrames

• dataf = DataFrame()

• dataf[:Student] = ["First", "Second", "Third"]

• dataf[:gender] = ["boy", "girl", "girl"]

• dataf[:age] = [17,16,15]

• dataf[:weight] = [63.4, 50.3, 47.6]

• dataf[:hight] = [178.4, 165.2, 155.3]

• dataf[:grade] = [11, 10, 8]

• dataf

• data == dataf

147

Other file formats

• JSON, by using the JSON package

• XML, the LightXML package

• YAML, the YAML package

148

Type hierarchy, immutability,
and typed functions

149

Type hierarchy
• Julia has many predefined types organized as a hierarchy

Any

Number

Complex Real

FloatingPoint Integer MathConst Rational

BigInt Bool Char Signed Unsigned

Int128 Int64 Int32 Int16 Int8
150

Type hierarchy
• Those have no their own off-springs are called concrete types.

Any

Number

Complex Real

FloatingPoint Integer MathConst Rational

BigInt Bool Char Signed Unsigned

Int128 Int64 Int32 Int16 Int8
151

Type hierarchy
• Those have their own off-springs are called abstract types

• Any

Number

Complex Real

FloatingPoint Integer MathConst Rational

BigInt Bool Char Signed Unsigned

Int128 Int64 Int32 Int16 Int8
152

Type hierarchy
• Every data/value is a concrete data/value. typeof() returns its

concreate type.

• Meanwhile it has also the type of all of its supertypes.

• typeof(3)

• isa(3, Number)

• isa(3, Real)

• isa(3, String)

153

User defined immutable types
• immutable Point2

• x::Float64

• y::Float64

• z::Float64

• end

• Point2(2.0, 4.0, 5.0)

• a = Point2(2.0, 4.0, 5.0)

• a

• a.y = 0.8

• a

• a= Point2(-2.0, 40.0, 0.05)

• a

154

Strings are immutable

• str0 = "Volleyball is a sport and an entrainment."

• typeof(ans)

• str0[10]='g'

• str0 = "The blue danube is a great music."

155

Constants are immutable

• const GC = 6.67e-11 # gravitational constant in m^3/(kg*s^2)

• GC = 7.34

156

Parametric types
• type Point

• x::Int64

• y::Int64

• end

• type MyPoint{T<:Real}

• x::T

• y::T

• end

• MyPoint(2, 4)

• MyPoint(2.0, 4.0)

• MyPoint(2, 4.0)

157

Parametric types

• workspace()

• type MyPoint{T1<:Real, T2<:Real}

• x::T1

• y::T2

• end

• MyPoint(2, 4)

• MyPoint(2.0, 4.0)

• MyPoint(2, 4.0)

158

Parametric types in functions

function myfunc_01{T<:Real}(x::T, y::T)

return x + y^3

end

• myfunc_01(3,2)

• myfunc_01(3.4,2.0)

• myfunc_01(3,2.0)

159

Parametric types in functions

Workspace()

function myfunc_01{T1<:Real, T2<:Real}(x::T1, y::T2)

return x + y^3

end

• myfunc_01(3,2.0)

160

Methods

For the same functionality, there could be many specific functions with
specific types. Then functions are also called methods.

methods(+)

methods(replace)

methods(myfunc_01)

161

Julia
• is such a high level computer language, that programmers can

completely forget types, letting Julia does everything on this respect;

• is such a high level computer language, that programmers can
completely operate types as variables.

162

Variable scopes, modules,
and exception handling

163

Variable scopes
• The region where a variable is accessible is called the scope of that variable.

• Variables defined/introduced in the top-level areas are accessible anywhere
by default, called global variables

• Variables defined in a local scope are only accessible within that scope by
default, called local variables.

• Typical local scopes are inside functions and loops.

• In a local scope, the same name local variable hides/blocks the corresponding
global one by default.

• Local scope variables can be declared with “global” as global.

• Local variables run faster.

• In the case of many levels of local scope, “local” may be needed to make
variables sure.

164

Variable scopes
• a = 4

• function ff04(x)

• return a+x

• end

•

• ff04(3)

165

Variable scopes
• a = 4

• function ff04(x)

• a = 2

• return a+x

• end

•

• a

• ff04(3)

• a

166

Variable scopes
• a = 4

• function ff04(x)

• global a = 2

• return a+x

• end

•

• a

• ff04(3)

• a

167

Variable scopes
• a = 4

• function ff04(x)

• global a = 2

• b = 9

• return a+x

• end

•

• b

• ff04(3)

• b

168

Variable scopes
• a = 4

• function ff04(x)

• global a = 2

• global b = 9

• return a+x

• end

•

• b

• ff04(3)

• b

169

Variable scopes
• a = 4

• function ff04(x)

• a = 2

• function ff0402()

• a = 1

• end

• ff0402()

• return a+x

• end

•

• ff04(3)
170

Variable scopes
• a = 4

• function ff04(x)

• a = 2

• function ff0402()

• local a = 1

• end

• ff0402()

• return a+x

• end

•

• ff04(3)
171

Modules
• Julia packages/libraries are coded as modules.

• Packages supply a great amount of useful functions and other tools.

• module MyModule

(module code)

end

• After installed, Modules can be used by “using” or “import”.

• Each package has its own naming space, independent on each other.

• To access anything in a module, the module name should be used,

then same name items in different modules are differentiated.

• Our simple normal programming is in the unique Main module.

• Variables of imported modules are read-only.
172

Package management

• ?Pkg

• Pkg.status()

• Pkg.update()

• Pkg.add("some_new_package")

173

Modules
• import Winston

• import Gadfly

• Winston.plot(rand(4))

• Gadfly.plot(x=[1:10], y=rand(10))

• Same function name “plot”, but no conflicts, as in different module

and the way to access.

174

Modules
• Module has a type of module: typeof(Main)

• Some modules are loaded as default: Main, Base, Core …

• a = 8

• d = 0.4

• g = "Good morning! "

• names(Main)

• names(Core)

• names(Base)

• whos()

• whos(Base)
175

Ways to load a module
• https://docs.julialang.org/en/stable/manual/modules/

176

https://docs.julialang.org/en/stable/manual/modules/

Ways to load a module
• https://docs.julialang.org/en/stable/manual/modules/

177

https://docs.julialang.org/en/stable/manual/modules/

Ways to load a module
• https://docs.julialang.org/en/stable/manual/modules/

178

suggested

https://docs.julialang.org/en/stable/manual/modules/

A module example
• module MyModule

• my_a = 1

• function update()

• global my_a += 2

• end

• end

•

• import MyModule

• MyModule.my_a

• MyModule.update()

• MyModule.my_a

• MyModule.update()

• MyModule.my_a

• MyModule.my_a =30

179

Path operations
• The variable LOAD_PATH contains a list of directories where Julia

looks for module files when needed.

• LOAD_PATH

• push!(LOAD_PATH, " c:/tmp ")

• LOAD_PATH

180

Exception handling
a = [3, 4, 5]

a[10]

try

a[10] #dangerous code

catch the_expt # the exception, error, problem

println(typeof(the_expt))

showerror(STDOUT, the_expt)

finally

println(" End of try structure. ") #whatever happens, do these.

end

181

More features

182

Metagramming
• Code a certain frame (macro structure) for a section of code,

allowing other lines of code inserted in by “calling” it like a function.

macro macro_name(a)

(more lines including $a)

end

183

Metagramming
macro mymacro(a)

quote

println(" Beginning in mymacro … ")

$a

println(" end of mymacro. ")

end

end

@mymacro global a1=1; global a2=2; global a3=a1+a2

(a1, a2, a3)

184

Metagramming
macro mymacro(a)

quote

println(" Beginning in mymacro … ")

$a

println(" end of mymacro. ")

end

end

@mymacro begin

a1 = 10; a2 = 100

a3 = 1000; a4 = 10000

global a5 = a1+a2+a3+a4

end

a5

185

Built-in macros
• @assert, @test, @test_approx_eq, @which, @show

• @time, @timed, @elapsed

• @async

• @elapsed global tt = [x^2 for x = 1:1000]

186

Julia also supports

• Networking (data transfer over TCP/IP protocol).

• Open Database Connectivity (ODBC package for databases and/or

datasources online connections).

• Parallel computing in MPI style.

• Call FORTRAN, C, and Python libraries.

187

References

Julialang.org

https://github.com/JuliaLang/julia.git

188

189

