
Introduction to FORTRAN

Gang Liu, Hartmut Schmider

gang.liu@queensu.ca, hartmut.schmider@queensu.ca

CAC, Queen's University

Summer School, Compute Ontario

2017

1

Overview
• Some backgrounds

• FORTRAN elements

• Data types, variables, operations

• Conditional branches

• Repeating constructs

• Code structures: module, program, subroutines, and functions

• Arrays

• Intrinsic functions

• Input, output, and external files

• Application example: 𝜋 calculation

2

Some backgrounds

3

Today's computers

• are very powerful and clever

• e.g. can help doctors to diagnose patient's problems (IBM Watson)

• e.g. can win world top players in board game GO (AlphaGo)

• however, machines/mechanics

• always need instruction to do next

• the instructions must be accurate, detailed, and complete

• computer code is for that purpose.

4

Programming/coding principle

• Logical

• Then feasible, no conflicts, no ambiguity.

• E.g. not cooking and playing volleyball at the same time.

• E.g. in a many-road intersection, can not ask one to walk some steps
without indicating direction.

• E.g. not try to present your "fourth" apple to your friend when you
have only three.

• E.g. not try to divide 92 by "Please accept this cruise for our
anniversary!"

5

How to learn coding

• Testing

• Testing

• And testing …

6

Computers of bits

• Almost everything in computers is bit or bits.

• Each bit can be imagined as a simple circuit with current running or not,
two states only.

• Normally the two states are represented with 0 and 1.

• Then do you mean a computer can only describe two states?

• No. Each bit can do that. But we have many many bits.

• E.g. 01011101100010001 may mean "I love you!"

• Actually unlimited number of bits can express anything.

• All data and code instructions are bits.

• And anything computers do is on bits essentially.

7

Minimum working unit in computers

• Not simply one bit, but

• 8 bits

• Called one BYTE.

• This means whatever you do anything, one or more BYTEs will be
used.

8

What we get when we buy a computer?

9

Computer key parts

• CPU. E.g. AMD A9-9410 2.9GHz

• Memory. 8GB is about 8,000,000,000 BYTES

• Hard disk: 1TB is about 1,000,000,000,000 BYTES

Accurately

1KB = 2^10 BYTES = 1024 BYTES

1MB = 2^10 KB = 1024 KB

1GB = 2^10 MB = 1024 MB

1TB = 2^10 GB = 1024 GB

1PB = 2^10 TB = 1024 TB

10

A sketch of computer structure and data flow

Hard diskHard disk

Main

Memory

CPU

Core Cache

CPU/Core can operate data only in cache at fixed frequency. Much
additional time is spent in data transporting between the main memory
and the cache. Fully making use of cache capacity reducing data movement
between main memory and cache is critical for performance improvement.

I/O

11

Data and code

• are stored in hard disks as files in certain format.

• Files are placed in a hierarchy of directories.

• Although everything is bits/BYTEs, some files are stored in a way such
that the BYTEs can be converted into characters, letter, numbers,
and/or other symbols, then readable to people. Called text files.

• Other files are just bits, not indented to be converted. Called binary
files. People can not read binary files. Meanwhile, computers can not
run based on text files, but based on instructions in some binary files,
called executable. Not all binary files are executable, e.g. movie data
files.

12

Computer languages

• Rules and facilities for writing (source) codes in text files, eventually
converted into executable binaries to instruct computers what to do.

• Although they were created like natural languages as much as
possible, their rules (syntax/grammar) are applied absolutely strictly.
Any violation will be refused.

• There are a great number of computer languages.

• For application, especially computing/data science, high-level
programming languages fall into two categories.

• Interpreted and compiled languages.

13

The difference

• In interpreted languages, like R, Python, and Matlab,
one or more lines of source code is (are) converted
into binary then executed. Then another section of
source code. This procedure is repeated till end. Then
computation is interrupted by conversions.

• In compiled languages, like C and FORTRAN, the
whole source code is compiled into a big executable
binary code. The compiled binary code can be run
repeatedly later, forgetting the source code.

14

The difference

Post office Post office

houseshouses houses

15

The difference

Post office Post office

houseshouses

The interpreted, like a postman on the left, needs to go back
and forth to deliver letters. The compiled (on the right) can
deliver all together and further optimize since knows all tasks.

16

So

The compiled ones usually run much fast than the
interpreted ones.

17

FORTRAN

is for fast (maybe also for easy) scientific
computation on purpose.

Then it supports features for such purpose as
much as possible, and in principle refused other
feature. Sure this is different from C/C++, which
likes to be most powerful.

18

As a compiled language, FORTRAN

was proposed and developed by John W. Backus's team in IBM, late 1953

(a contraction of FORmula TRANslation)

19

Versions Year Versions Year

FORTRAN 1957 Fortran 90 1991

FORTRAN II 1958 Fortran 95 1997

FORTRAN III 1958 Fortran 2003 2004

FORTRAN IV 1961 Fortran 2008 2010

FORTRAN 66 1966 Fortran 2015 2018?

FORTRAN 77 1978 Fortran ???????

Fortran 90 is a big jump

which makes FORTRAN a modern language.

We will talk about basic Fortran 90, which should be good for all later
versions as well.

20

FORTRAN elements

21

Fortran character set

• the 26 letters of the English alphabet (case insensitive)

• the 10 Arabic numerals, 0 to 9

• the underscore, _,

• (all above is called alphanumeric characters)

• and the ones in the table of the next page

22

Special characters of Fortran

23

Character Name Characer Name

= Equals sign : Colon

+ Plus sign Blank

- Minus sign ! Exclamation mark

* Asterisk " Quotation mark

/ Slash % Percent

(Left parenthesis & Ampersand

) Right parenthesis ; Semicolon

, Comma < Less than

. Decimal point > Greater than

$ Currency symbol ? Question mark

' Apostrophe

Source form

• Source code is made of lines

• Each line may contain up to 132 characters

• (For versions before 90 up to 72)

• Each line usually contains one statement, e.g.

• x = (-y + root_of_discriminant)/(2.0*a)

• Anything after "!" in a given line is a comment, like

• ! Here is a comment to make some notes.

• x = y/a - b ! Solve the linear equation

• (For versions before 90, the first character must be "C" for comments)

24

Source form
If a line ends with "&", the next line is a continuation, thus a very long statement/line can
be split into more lines, but limited to 39.

x = &

(-y + root_of_discriminant) &

/(2.0*a)

If the first non-blank character in the next line is "&", those blank characters and the "&"
are ignored:

x = &

& (-y + root_of_discriminant) / (2.0*a)

(For versions before 90, continuation lines are identified by a nonblank, nonzero character
in column 6)

More than one short statements can be written into one line, separated with ";", e.g.

a = 3.5 ; b = c + d ; speed = distance / time

25

Names
Programmers need to create/name many names, especially variable names.

All names must consist of between 1 and 31 alphanumeric characters of which the
first must be a letter.

A, a, ggg, f3d, alpha, KING8, second_generation, TRY_003 are all legal.

However,

delete them

2 students

$20

are all illegal.

26

Compiling and running

A Fortran source code must be compiled before running with a compiler.
Supposing a file called myfortran01.f90 contains

program mywork
print*, "My work is finished."

end program mywork
ls -ltr
f90 myfortran01.f90
ifort myfortran01.f90
gfortran myfortran01.f90
ls -ltr
./a.out

27

Compiling many files for one executable

Supposing myfortran01.f90, myfortran02.f90, myfortran03.f90 are
source

ifort myfortran01.f90 myfortran02.f90 myfortran03.f90

./a.out

28

Compiling many files for one executable

ifort -c myfortran01.f90

ifort -c myfortran02.f90

ifort -c myfortran03.f90

ls -ltr

rm a.out

ifort -o myexe myfortran01.o myfortran02.o myfortran03.o

ls -ltr

./myexe

29

Compiling many files for one executable

ifort -c myfortran01.f90

ifort -c myfortran02.f90

ls -ltr

rm a.out

ifort -o myexe myfortran01.o myfortran02.o myfortran03.f90

ls -ltr

./myexe

30

Compiling many files for one executable

ifort -c -O3 myfortran01.f90

ifort -c -O3 myfortran02.f90

ifort -c -O3 myfortran03.f90

ls -ltr

rm a.out

ifort -o myexe -O3 myfortran01.o myfortran02.o myfortran03.o

ls -ltr

./myexe

31

Data Types, Variables, and Operations

32

Data Types

• What and why types?

• Each type was defined, so that a reasonable amount of bits or BYTEs
allocated in memory to store such values with certain format.

• Once a data type is defined, we can use it, forgetting its details.

• FORTRAN has the following types defined in the language as intrinsic
types. Programmers can define more combined data types for their
own projects.

33

Intrinsic Types

• INTEGER

• REAL

• DOUBLE PRECISION

• COMPLEX

• DOUBLE COMPLEX

• LOGICAL

• CHARACTER

34

INTEGER Type

• 2

• 5

• INTEGER :: I, J, K

• INTEGER :: LIMIT, SEAT_NUMBER = 34

• INTEGER, PARAMETER :: NUMBER_OF_MONTHS_A_YEAR = 12

35

INTEGER Type

• is for one integer.

• normally has 64 bits (8 BYTEs) in memory.

• one bit is used for sign, maybe 1 meaning +, 0 for -.

• the rest 63 bits are for the actual integer absolute value.

• the maximum positive value can be stored is 2**63 -1 = 9,223,3…,807

• Usually one would assume the type is big enough for holding values
we are interested, then forget all above details. In case an integer is
bigger than the type can express, an overflow error will be reported
then the code running will be stopped automatically. All other types
similar.

36

REAL Type

• 2.0

• 5.4e12

• REAL :: R, RG, SPEED = 90.0, DISTANCE

• REAL, PARAMETER :: MASS_OF_THE_OBJECT = 1.45

• A REAL usually has 32 bits (4 BYTEs) in memory (single precision).

37

DOUBLE PRECISION Type

• 2.0d0

• 5.4d12

• DOUBLE PRECISION :: R, RG, SPEED = 90.0d0

• A DOUBLE PRECISION usually has 64 bits (8 BYTEs) in memory (double
precision).

38

COMPLEX Type

• (1.0, 2.0)

• (4.6e22, 5.4e12)

• COMPLEX :: R, RG, SPEED = (0.0, 90.0)

• A COMPLEX usually has 64 bits (8 BYTEs) in memory (two single
precision).

39

DOUBLE COMPLEX Type

• (1.0d0, 2.0d0)

• (4.6d-22, -5.4d12)

• DOUBLE COMPLEX :: R, RG, SPEED = (0.0d0, 90.0d0)

• A DOUBLE COMPLEX usually has 128 bits (16 BYTEs) in memory (two
double precision).

40

Although a kind number can be further specified

• INTEGER (KIND = 2)

• INTEGER (KIND = 4)

• REAL (KIND = 4)

• DOUBLE PRECISION (KIND = 4)

• COMPLEX (KIND = 6)

• DOUBLE COMPLEX (KIND =8)

• I personally do not suggest it, as kind numbers are usually processor
or compiler dependent, rather than universal applicable.

41

Other ways to specify BYTEs

• INTEGER*8

• REAL*8 !double precision

• REAL*16 !quadruple precision

• COMPLEX*16 !double precision

• COMPLEX*32 !quadruple precision

• which are good enough for most scientific computations and
universally applicable.

42

Implicit rules

43

Fortran adopted an implicit rule for long period of time. It is called I-N
rule, which means any variable beginning with I, J, K, L, M, N are
assumed as integer type, otherwise real type. Then in such a case,
variables can be used directly without declaration. This rule saved
some typing effort for programming. But later people realized that even
very heavy typing is ignorable compared with other effort in
programming, e.g. debugging. Explicitly defining variables help
programming to reduce errors, so more preferred now. In order to get
rid of the implicit rule, the statement

IMPLICIT NONE

can be used.

LOGICAL Type

• Only has two possible values

• .TRUE.

• .FALSE.

• .TRUE. may also be denoted as T or 1

• .FALSE. may be denoted as F or 0.

• LOGICAL :: A1 = .TRUE., FFF = .FALSE.

44

CHARACTER Type

• "s"

• "Kingston is a great place to visit!"

• CHARACTER (LEN=11) :: AAA

• CHARACTER (LEN=11) :: AA1 = 'KINGSTON'

• CHARACTER (LEN=11) :: AAB = "KINGSTON IS"

• CHARACTER (LEN=11) :: B_2 = "KINGSTON IS GREAT!"

• CHARACTER (LEN=*), PARAMETER :: &

• BB_A = "Kingston is a great place to visit!"

45

TEST IT with file t1.f90
PROGRAM A_TEST

CHARACTER (LEN=11) :: AAA

CHARACTER (LEN=11) :: AA1 = "KINGSTON"

CHARACTER (LEN=11) :: AAB = "KINGSTON IS"

CHARACTER (LEN=11) :: B_2 = "KINGSTON IS GREAT!"

CHARACTER (LEN=*), PARAMETER :: BB_A = "Kingston is a great place to visit!"

PRINT*, AA1

PRINT*, AAB

PRINT*, B_2

PRINT*, BB_A

STOP

END PROGRAM A_TEST

Ifort t1.f90

./a.out

46

Variables

• Variables are essentially the variables of mathematics.

• However they must be defined/declared as fixed data types at the
beginning of the code unit where they will be assessed.

• Then the compiler will allocate enough space in memory for them,
and of course specify the format to hold data.

• Must be initialized with values before being read. The values can be
changed and read unlimitedly later. But the data type can not be
changed.

47

Basic operations on numbers
Program test_02

integer :: i1, i2, i3

real :: rl1, rl2, rl3

i1 = 4; i2 = 3

i3 = i1 + i2

Print*, i1, i2, i3, i1-i2, i1*i2, i1/i2, i1**i2

rl1 = 4; rl2 = 3

rl3 = rl1 + rl2

Print*, rl1, rl2, rl3, rl1-rl2, rl1*rl2, rl1/rl2, rl1**rl2

Stop

End Program test_02

48

Integer divisions

Program test_03

Print*, "Integer divisions: ", 1/3, 2/3, 3/3, 4/3, 5/3, 6/3

Print*, "Real divisions: ", 1.0/3, 2/3.0, 3./3, 4.0/3.0, 5./3., 6.0/3

Stop

End Program test_03

49

Operations on different types

Program test_04

Double precision :: dp = 4.5d0

Print*, 1 + 2.9, 3.0 + 3, 1 + dp, 4.3 + dp

Stop

End Program test_04

Integer => real or double precision

Low precision => high precision

50

Assignment with different types
Program test_06

Integer :: ii = 4, ii2, ii3

Real :: rr =5.123456789123456789e0, rr2, rr3

Double precision :: dp = 6.123456789123456789d0, dp2, dp3

ii2 = rr; ii3 = dp

Print*, ii2, ii3

rr2 = ii; rr3 = dp

Print*, rr2, rr3

dp2 = ii; dp3 = rr

Print*, dp2, dp3

Stop

End Program test_06

Always converted into the type of the variable.
51

Precedence
Program test_07

Print*, 1+2-3, 1-3+2, 1+2*3, 1*2+3

Print*, 4*2/3, 4/2*3, 4*(2/3), 4/(2*3)

Print*, 2**3*5, 9*3**2

Stop

End Program test_07

52

Precedence:

** exponentiation

* / multiplication, division

+ - addition, subtraction

Use parentheses () to change or make sure precedence.

Operations on logical variables

53

Program test_09

Print*, .not. .true., .not. .false.

Print*, .true. .and. .true., .true. .and. .false.

Print*, .true. .or. .true., .true. .or. .false.

Print*, .true. .eqv. .true., .true. .eqv. .false.

Print*, .true. .neqv. .true., .true. .neqv. .false.

Stop

End Program test_09

Data comparisons resulting in logical values

54

Program test_10

Print*, 5 > 6, 7 < 8

Stop

End Program test_10

.lt. or < less than

.le. or <= less than or equal

.eq. or == equal

.ne. or /= not equal

.gt. or > great than

.ge. or >= great than or equal

Operations on characters

55

Program test_12

print*, "Queen's Univer"//"sity is in Kingston."

Stop

End Program test_12

Concatenation

Character substrings

56

Program test_14

Implicit none

Character (len=40) :: a_string = "Queen's University is in Kingston."

Print*, a_string

Print*, a_string(:6)

Print*, a_string(8:)

Print*, a_string(4:12)

Print*, a_string(9:9)

Stop

End Program test_14

Derived data types
type student

character (len=20) :: name

integer :: id

integer :: grade

real :: age

real :: height

end type student

type(student) :: a_queens_student

a_queens_student%age

57

Conditional branches

58

IF statement

if (a condition is true) (do something)

if (iii > 9) print*, iii

59

GO TO statement
• An example

if (a condition is true) go to 25

(other statements)

25 c = a + b

(other statements)

• Not suggested.

60

IF Construct
• It allows us to code sections of code to be executed under conditions.

• Most cases, different conditions execute different part/path of code.

• The general form

if (condition1 is true) then

(do some things accordingly)

else if (condition2 is true) then

(do some other things accordingly)

else if (condition3 is true) then

(do some other things accordingly)

else if (… is true) then

(do some other things accordingly)

else

(do other things accordingly)

end if

• All else if and else constructs are optional and no limit on number of else if constructs.

61

IF Construct
• An example

var = 5

if (var > 10) then

print*, "var has value ", var, " and bigger than 10. "

else if (var < 10) then

print*, "var has value ", var, " and less than 10. "

else

print*, "var has value ", var, " and is 10. "

end if

62

IF Construct
• can be unlimited nested.

• Example
if (my_dad_is_at_home) then

(my dad will cook)
else

if (my_mom_is_at_home) then
(my mom will cook)

else
(I will cook)

end if
end if

63

CASE Construct

• Example

select case (an_integer)

case (:-1)

(do things accordingly)

case (0)

(do things accordingly)

case (1:7)

(do things accordingly)

case (8:22)

(do things accordingly)

case default

(do things accordingly)

end select

64

Repeating constructs

65

If you have

• log(2.0) + log(3.0) + log(4.0) + log(5.0) + … + log(10000.0) to
calculate,

• you would absolutely not like to write all such operations one by one.

• Loops are for such repeated works and can make life much easier.

66

It can be done by a do loop
program test_20

implicit none

integer*8 :: i

real*8 :: result

result = 0.0d0

do i = 2, 10000

result = result + log(i * 1.0d0)

end do

print*, result

stop

end program test_20

67

The do loop
• takes a form of

[name:] do an_integer = beginning, ending, step

(do something for the iteration)

end do [name]

• Example

integer :: a

do a = 2001, 2017

print*, a, " is a year of this centrury. "

end do

68

CYCLE statement in do loop
• integer :: ii

do ii = 1, 1000, 2

(do something for the iteration)

end do

• is equivalent to

ONLY_FOR_ODD_NUMBERS: do ii = 1, 1000

if ((ii/2) == 0) cycle ONLY_FOR_ODD_NUMBERS

(do something for the iteration)

end do ONLY_FOR_ODD_NUMBERS

69

EXIT statement in do loop

UNLIMITED_LOOP: do

if (some condition is met) exit UNLIMITED_LOOP

(do something for the iteration)

end do UNLIMITED_LOOP

70

Loops can be unlimited nested

program test_22

implicit none

integer :: i, j

do i = 1, 9

do j = 1, 9

print*, "The multiplication of ",i," and ",j," is ",i*j

end do

end do

stop

end program test_22
71

Arrays

72

An array
• consists of a rectangular set of elements (scaler variables), all of the exactly same

type.

• real, dimension(10) :: a

• then the successive elements of the array are a(1), a(2), …, a(10)

• real, dimension(-10:20) :: vt

• the elements are vt(-10), vt(-9), vt(-8), …, vt(20)

• real, dimension(5, 4) :: b

• then the successive elements of the array in memory are

b(1, 1), b(2, 1), b(3, 1), b(4, 1), b(5, 1),

b(1, 2), b(2, 2), b(3, 2), b(4, 2), b(5, 2),

b(1, 3), b(2, 3), b(3, 3), b(4, 3), b(5, 3),

b(1, 4), b(2, 4), b(3, 4), b(4, 4), b(5, 4)

they can also declared as

real :: a(10), vt(-10:20), b(5,4)
73

Arrays should be initialized before being used
• real :: a(10), vt(-10:20), b(5,4)

• a = 0.0d0

• vt = 0.0d0

• b = 0.0d0

• character (len=20) :: aaa(25,300)

• aaa = ' '

74

Subarrays and collective operations
real :: a(10), vt(-10:20), b(5,4)

vt(-2:2) = (/1.4, 3.6, 7.3, 8.9, 13.8/)

vt(:2) = 9.0

vt(3:) = 25.0

vt(-8:2:3) = 64.0

b = 24.0

a(2:5) = vt(-3:0) + b(1:4, 3)

75

Elemental operations on arrays
real :: b(5,4)

integer :: i, j

do i = 1, 4

do j = 1, 5

b (j, i) = (sin(i*1.0))**j

end do

end do

76

Elemental operations on arrays
real :: b(5,4), c(4, 6), d(5,6)

integer :: i, j, k

b = 3.4

c = 5.9

d = 0.0

do i = 1, 6

do j = 1, 5

do k = 1, 4

d (j, i) = d(j, i) + b(j, k) * c(k, i)

end do

end do

end do
77

Allocatable arrays
• Array sizes may not be known until run time

real, allocatable :: arr1(:), arr2(:, :), array8(:, :, :, :)

integer :: i=3, j=5, k=6, l=8

…

allocate(arr1(i))

allocate(arr2(k,j))

allocate(array8(i,j,k,l))

…

deallocate(arr1, arr2, array8)

78

Code structures:
modules, program, subroutines, and functions

79

Nowadays, people do everything step by step

80

Programming is not an exception
• A big computational task is usually cut into many smaller ones.

• With input and output assumed to some degrees, what and how to
complete the inside of each smaller task is usually independent on
any other smaller tasks. In other words, the inside is encapsulated.

• Functions/subroutines are used for such smaller tasks or steps.

• Normally when we code functions/subroutines, we can focus on the
specific small task, forgetting the whole big complicated task.

• Functions/subroutines can be unlimitedly re-used and make code well
structured.

• Additionally, modules are a great help in many respects.

• Functions/subroutines can only access their arguments, local
variables, and data in the modules whey use.

81

The general form of functions

[type] function function_name(dummy_argument_list)

! function body (statements)

! function_name is the variable to be assigned new value

! to send back.

return

end function function_name

82

A function example
real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return

end function distance

program test_30

interface

real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

end function distance

end interface

real*8 :: a1, b1, a2, b2

a1 = 2.3d0; b1 = 5.3d0; a2 = 3.2d2; b2 = 6.3d4

print*, distance(a1, b1, a2, b2)

end program test_30

83

The return data type can also be written as
function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2, distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return

end function distance

program test_30

interface

function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2, distance

end function distance

end interface

real*8 :: a1, b1, a2, b2

a1 = 2.3d0; b1 = 5.3d0; a2 = 3.2d2; b2 = 6.3d4

print*, distance(a1, b1, a2, b2)

end program test_30

84

Normally, when a function is called

all arguments should be provided in sequence, like

real*8 function my_functioin(ar1, ar2, ar3, … arn)

…

end function my_functioin

aa = my_functioin(act1, act2, act3, … actn)

85

Argument names can also be used when a
function is called

real*8 function my_function(ar1, ar2, ar3, … arn)

…

end function my_function

aa = my_function(act1, act2, arn = act3, … ar3 = actn)

then the argument name is called keyword. Once a keyword
argument is used, no more pure positional arguments allowed after it.

86

Optional arguments in functions
should be declared at the end of argument list

real*8 function my_function(ar1, ar2, ar3, … arn, p1, p2, …, pn)

real*8, optional :: p1, p2, …, pn

if (present(p1)) then

…

end if

…

end function my_function

aa = my_function(act1, act2, act3, … actn, 3.5d0)

87

Functions as arguments in functions

real*8 function minimum(ar1, ar2, a_function)

real*8 :: ar1, ar2

interface

real*8 function a_function(x)

real*8 :: x

end function a_function

end interface

…

end function minimum

88

real*8 function pain(x)

real*8 :: x

pain = 72.0d0 + 3.0d0*x + 5.0d0*x**2

end function pain

aa = minimum(10.d0, 100.d0, pain)

Actually

program program_name

…

end program program_name

is also a function, but called the unique main function, starting point of
code running.

89

Subroutines are very similar to functions

but everything is in the argument list including the return variable,
then may return many variables.

90

Subroutine example
real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return

end function distance

subroutine get_distance(x1, y1, x2, y2, distance)

real*8 :: x1, y1, x2, y2, distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return

end subroutine get_distance

aa = distance(a1, b1, a2, b2)

call get_distance(x1, y1, x2, y2, distance)

91

Argument intent

subroutine get_distance(x1, y1, x2, y2, distance)

real*8, intent(in) :: x1, y1, x2, y2

real*8, intent(out) :: distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return

end subroutine get_distance

real*8, intent(inout) :: aaa, bbb

92

Modules

can be used to declare global data and other specification statements
(like interface block). It can be accessible when a "use" statement of it
is coded.

Modules can use other previous modules.

93

Module example
module factorials

implicit none

integer, parameter :: size_of_factls = 10

real*8 :: factls(size_of_factls)

end module factorials

subroutine ini_factorials()

use factorials

implicit none

integer :: i

factls(1) = 1.0d0

do i = 2, size_of_factls

factls(i) = factls(i-1) * i

end do

return

end subroutine ini_factorials
94

subroutine print_a_factorial(i)

use factorials

implicit none

integer :: i

print*, factls(i)

end subroutine print_a_factorial

program test_40

use factorials

implicit none

call ini_factorials()

call print_a_factorial(8)

stop

end program test_40

Module, functions, subroutines, and the main function

can contain internal subprograms (functions and/or
subroutines), after a

contains

statement.

An internal subprogram automatically has access to all the
host's entities, including the ability to call its other internal
subprograms.

95

Module, functions, subroutine, and the main function
module factorials

implicit none

integer, parameter :: size_of_factls = 10

real*8 :: factls(size_of_factls)

contains

subroutine ini_factorials()

integer :: i

factls(1) = 1.0d0

do i = 2, size_of_factls

factls(i) = factls(i-1) * i

end do

return

end subroutine ini_factorials

end module factorials
96

subroutine print_a_factorial(i)

use factorials

implicit none

integer :: i

print*, factls(i)

end subroutine print_a_factorial

program test_40

use factorials

implicit none

call ini_factorials()

call print_a_factorial(8)

stop

end program test_40

Overloading
A group of functions/subroutines usually of the same functionality but with
different dummy argument list of types, can be "renamed" the same in a interface
block, although they originally have different names.

module my_renaming

interface the_new_universal_name

function old_name_001(…)

…

function old_name_002(…)

…

function old_name_003(…)

…

end interface the_new_universal_name

end module my_renaming

use my_renaming 97

Automatic objects
subroutine swap(a, b)

real*8 :: a(:), b(:)
real*8 :: work(size(a))
work = a
a = b
b = work

end subroutine swap

subroutine word_process(word1)
character(len=*) :: word1
character(len=len(word1)) :: word2
…
end subroutine word_process 98

real*8 :: a(10), b(10)

real*8 :: cc(800), dd(800)

…

call swap(a, b)

call swap(cc, dd)

character(len=20) :: aa1

character(len=436) :: ggt

call word_process(aa1)

call word_process(ggt)

Intrinsic procedures

99

Elemental numeric functions

abs(a), aimag(z), aint(a), anint(a), ceiling(a),

cmplx(x [,y]), floor(a), int(a), nint(a), real(a)

conjg(z), dim(x, y), max(a1, a2 [, a3, …]),

min(a1, a2 [, a3, …]), mod(a, p),

modulo(a, p), sign(a, b)

100

Elemental mathmatical functions

acos(x), asin(x), atan(x), atan2(y, x), cos(x), cosh(x),

exp(x), log(x), log10(x), sin(x), sinh(x), sqrt(x), tan(x),

tanh(x)

101

Character-integer conversions

achar(i), char(i), iachar(c), ichar(c)

102

String-handling functions

len(string)

adjustl(string), adjustr(string),

index(string, substring [, back])

len_trim(string), scan(string, set [, back])

verify(string, set [, back])

repeat(string, ncopies)

trim(string)

103

Array operations

dot_product(vector_a, vector_b)

matmul(matrix_a, matrix_b)

all(mask), any(mask), count(mask)

maxval(array), minval(array),

product(array), sum(array)

allocated(array)

lbound(array [, dim]), ubound(array [, dim])

shape(array), size(array [, dim])

transpose(matrix)
104

Time

call date_and_time([date] [, time] [, zone] [, values])

call system_clock([count] [, count_rate] [, count_max])

call cpu_time(time)

105

Random numbers

call random_number(harvest)

call random_seed([size] [put] [get])

106

Input/output and external files

107

Keyboard input and terminal output

read(*, *) variables

print*, variables

write(*,*) variables

108

External files

unit_number = 25

open(unit_number, file = '…/file1.dat')

read(unit_number, *) variables

close(unit_number)

open(unit_number, file = '…/file2.dat')

write(unit_number, *) variables

close(unit_number)

109

read/write formats

read(unit_number, 10) x, y, z

write(unit_number, 10) x, y, z

10 format(3e20.12)

or

read(unit_number, '(3e20.12)') x, y, z

write(unit_number, '(3e20.12)') x, y, z

110

read/write formats

read(unit_number, '(a, i8, f20.12)') x, y, z

write(unit_number, '(a, i8, f20.12)') x, y, z

Many formats, inquiries, and various operations can be done on
formatted, unformatted, direct-access files.

111

Application example: 𝜋 calculation

112

𝜋 calculation based on half circle

113

𝜋 =
ℎ𝑎𝑙𝑓_𝑐𝑖𝑟𝑐𝑙𝑒

𝑟

𝜋 calculation based on half circle

114

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

115

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

116

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

𝜋 calculation based on half circle

117

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2

𝜋 calculation based on half circle

118

𝜋 =
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2

MODULE BASIC_DATA_MDL

IMPLICIT NONE

REAL*8, PARAMETER :: RADIUS = 1.0D0

REAL*8, PARAMETER :: RADIUS_SQUIRED = RADIUS ** 2

REAL*8, PARAMETER :: REQUIRED_ACCURACY = 1.0D-12

END MODULE BASIC_DATA_MDL

REAL*8 FUNCTION NEXT_CHORD(CHORD_TRIED)

USE BASIC_DATA_MDL

REAL*8 :: CHORD_TRIED, HALF, VT1, VT2

HALF = CHORD_TRIED/2

VT1 = SQRT(RADIUS_SQUIRED - HALF * HALF)

VT2 = RADIUS - VT1

NEXT_CHORD = SQRT(HALF * HALF + VT2*VT2)

END FUNCTION NEXT_CHORD

𝜋 calculation based on half circle

119

MODULE INTERFACE_MDL

INTERFACE

REAL*8 FUNCTION NEXT_CHORD(CHORD_TRIED)

REAL*8 :: CHORD_TRIED

END FUNCTION NEXT_CHORD

END INTERFACE

END MODULE INTERFACE_MDL

𝜋 calculation based on half circle

120

𝜋 =
σ 𝑐ℎ𝑜𝑟𝑑𝑠

𝑟
r=1.0PROGRAM PI_CALCULATION

USE BASIC_DATA_MDL

USE INTERFACE_MDL

INTEGER :: EFFORT

REAL*8 :: CHORD, NUMBER_OF_CHORDS, PREVIOUS_PI, CURRENT_PI, RELATIVE_ERROR

EFFORT = 1; CHORD = SQRT(RADIUS_SQUIRED + RADIUS_SQUIRED)

NUMBER_OF_CHORDS = 2.0D0

PREVIOUS_PI = 8.0D10; CURRENT_PI = CHORD * NUMBER_OF_CHORDS / RADIUS

RELATIVE_ERROR = ABS(CURRENT_PI - PREVIOUS_PI) / CURRENT_PI

WORKING_HARD: DO

EFFORT = EFFORT + 1; CHORD = NEXT_CHORD(CHORD)

NUMBER_OF_CHORDS = 2.0D0 * NUMBER_OF_CHORDS

PREVIOUS_PI = CURRENT_PI; CURRENT_PI = CHORD * NUMBER_OF_CHORDS / RADIUS

RELATIVE_ERROR = ABS(CURRENT_PI - PREVIOUS_PI) / CURRENT_PI

IF(RELATIVE_ERROR < REQUIRED_ACCURACY) EXIT WORKING_HARD

END DO WORKING_HARD

PRINT*, EFFORT, CURRENT_PI, PREVIOUS_PI

END PROGRAM PI_CALCULATION

𝜋 calculation for higher accuracy

121

Change all real*8 into real*16 and

REQUIRED_ACCURACY = 1.0D-12 into 1.0D-32

𝜋 in wiki
• https://en.wikipedia.org/wiki/Pi

• The first 50 decimal digits are
3.14159265358979323846264338327950288419716939937510

122

References

http://j3-fortran.org/

http://j3-fortran.org/doc/year/10/10-007r1.pdf
123

124

