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Overview
• Some backgrounds 

• FORTRAN elements

• Data types, variables, operations

• Conditional branches  

• Repeating constructs

• Code structures: module, program, subroutines, and functions

• Arrays 

• Intrinsic functions 

• Input, output, and external files

• Application example:  𝜋 calculation
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Some backgrounds 
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Today's computers 

• are very powerful and clever

• e.g.  can help doctors to diagnose patient's problems (IBM Watson)

• e.g. can win world top players in board game GO (AlphaGo)  

• however, machines/mechanics 

• always need instruction to do next

• the instructions must be accurate, detailed, and complete

• computer code is for that purpose.   
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Programming/coding principle

• Logical

• Then feasible, no conflicts, no ambiguity.

• E.g. not cooking and playing volleyball at the same time.

• E.g. in a many-road intersection, can not ask one to walk some steps 
without indicating direction.

• E.g. not try to present your "fourth" apple to your friend when you 
have only three. 

• E.g. not try to divide 92 by "Please accept this cruise for our 
anniversary!" 
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How to learn coding

• Testing 

• Testing

• And testing …
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Computers of bits 

• Almost everything in computers is bit or bits. 

• Each bit can be imagined as a simple circuit with current running or not, 
two states only.

• Normally the two states are represented with 0 and 1.

• Then do you mean a computer can only describe two states?

• No. Each bit can do that. But we have many many bits. 

• E.g. 01011101100010001 may mean "I love you!"

• Actually unlimited number of bits can express anything.

• All data and code instructions are bits.

• And anything computers do is on bits essentially. 
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Minimum working unit in computers

• Not simply one bit, but

• 8 bits

• Called one BYTE. 

• This means whatever you do anything, one or more BYTEs will be 
used.
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What we get when we buy a computer?
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Computer key parts

• CPU.                    E.g.   AMD  A9-9410          2.9GHz

• Memory. 8GB  is about         8,000,000,000 BYTES

• Hard disk: 1TB is about 1,000,000,000,000 BYTES

Accurately 

1KB = 2^10 BYTES = 1024 BYTES

1MB = 2^10 KB = 1024 KB

1GB = 2^10 MB = 1024 MB

1TB = 2^10 GB = 1024 GB

1PB = 2^10 TB = 1024 TB

10



A sketch of computer structure and data flow 

Hard diskHard disk

Main 

Memory 

CPU

Core      Cache

CPU/Core can operate data only in cache at fixed frequency. Much 
additional time is spent in data transporting between the main memory 
and the cache. Fully making use of cache capacity reducing data movement 
between main memory and cache is critical for performance improvement. 

I/O
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Data and code

• are stored in hard disks as files in certain format.

• Files are placed in a hierarchy of directories. 

• Although everything is bits/BYTEs, some files are stored in a way such 
that the BYTEs can be converted into characters, letter, numbers, 
and/or other symbols, then readable to people. Called text files.

• Other files are just bits, not indented to be converted. Called binary 
files. People can not read binary files. Meanwhile, computers can not 
run based on text files, but based on instructions in some binary files, 
called executable. Not all binary files are executable, e.g. movie data 
files. 

12



Computer languages 

• Rules and facilities for writing (source) codes in text files, eventually 
converted into executable binaries to instruct computers what to do.

• Although they were created like natural languages as much as 
possible, their rules (syntax/grammar) are applied absolutely strictly. 
Any violation will be refused.

• There are a great number of computer languages.

• For application, especially computing/data science, high-level 
programming languages fall into two categories.

• Interpreted  and compiled languages.   
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The difference 

• In interpreted languages, like R, Python, and Matlab,  
one or more lines of source code is (are) converted  
into binary then executed. Then another section of 
source code. This procedure is repeated till end. Then 
computation is interrupted by conversions.  

• In compiled languages, like C and FORTRAN, the   
whole source code is compiled into a big executable 
binary code. The compiled binary code can be run 
repeatedly later, forgetting the source code. 
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The difference 

Post office Post office

houseshouses houses
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The difference 

Post office Post office

houseshouses

The interpreted, like a postman on the left, needs to go back 
and forth to deliver letters. The compiled (on the right) can 
deliver all together and further optimize since knows all tasks. 

16



So

The compiled ones usually run much fast than the 
interpreted ones.
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FORTRAN

is for fast (maybe also for easy) scientific 
computation on purpose. 

Then it supports features for such purpose as 
much as possible, and in principle refused other 
feature. Sure this is different from C/C++, which 
likes to be most powerful. 
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As a compiled language, FORTRAN

was proposed and developed by John W. Backus's team in IBM, late 1953

(a contraction of FORmula TRANslation)
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Versions Year Versions Year

FORTRAN 1957 Fortran 90 1991

FORTRAN  II 1958 Fortran 95 1997

FORTRAN  III 1958 Fortran  2003 2004

FORTRAN  IV 1961 Fortran  2008 2010

FORTRAN  66 1966 Fortran  2015 2018?

FORTRAN  77 1978 Fortran  ???????



Fortran 90 is a big jump

which makes FORTRAN a modern language. 

We will talk about basic Fortran 90, which should be good for all later 
versions as well.

20



FORTRAN elements
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Fortran character set

• the 26 letters of the English alphabet (case insensitive)  

• the 10 Arabic numerals, 0 to 9

• the underscore, _,  

• (all above is called alphanumeric characters)

• and the ones in the table of the next page
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Special characters of Fortran
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Character Name Characer Name

= Equals sign : Colon

+ Plus sign Blank

- Minus sign ! Exclamation mark

* Asterisk " Quotation mark

/ Slash % Percent 

( Left parenthesis & Ampersand 

) Right parenthesis ; Semicolon

, Comma < Less than

. Decimal point > Greater than 

$ Currency symbol ? Question mark

' Apostrophe



Source form

• Source code is made of lines

• Each line may contain up to 132 characters 

• (For versions before 90 up to 72)

• Each line usually contains one statement, e.g.

• x = (-y + root_of_discriminant)/(2.0*a)

• Anything after "!" in a given line is a comment, like

• ! Here is a comment to make some notes.

• x = y/a - b  ! Solve the linear equation 

• (For versions before 90, the first character must be "C" for comments)

24



Source form
If a line ends with "&", the next line is a continuation, thus a very long statement/line can 
be split into more lines, but limited to 39.

x  =                                                                                                &

(-y + root_of_discriminant)                                             &

/(2.0*a)

If the first non-blank character in the next line is "&", those blank characters and the "&" 
are ignored:

x  =                                                                                                &

& (-y + root_of_discriminant) / (2.0*a)                            

(For versions before 90, continuation lines are identified by a nonblank, nonzero character 
in column 6)

More than one short statements can be written into one line, separated with ";", e.g.

a = 3.5 ;  b = c + d ;  speed = distance / time
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Names
Programmers need to create/name many names, especially variable  names. 

All names must consist of between 1 and 31 alphanumeric characters of which the 
first must be a letter. 

A, a, ggg, f3d, alpha, KING8, second_generation, TRY_003 are all legal.

However, 

delete them

2 students

$20

are all illegal. 
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Compiling and running

A Fortran source code must be compiled before running with a compiler. 
Supposing a file called myfortran01.f90 contains

program mywork
print*, "My work is finished."

end program mywork
ls -ltr
f90             myfortran01.f90
ifort myfortran01.f90
gfortran myfortran01.f90
ls -ltr
./a.out
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Compiling many files for one executable 

Supposing   myfortran01.f90, myfortran02.f90, myfortran03.f90  are 
source

ifort myfortran01.f90   myfortran02.f90   myfortran03.f90 

./a.out
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Compiling many files for one executable 

ifort -c     myfortran01.f90  

ifort -c myfortran02.f90   

ifort -c myfortran03.f90 

ls -ltr

rm a.out

ifort -o myexe myfortran01.o  myfortran02.o  myfortran03.o

ls -ltr

./myexe
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Compiling many files for one executable 

ifort -c     myfortran01.f90  

ifort -c myfortran02.f90   

ls -ltr

rm a.out

ifort -o myexe myfortran01.o  myfortran02.o  myfortran03.f90

ls -ltr

./myexe
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Compiling many files for one executable 

ifort -c   -O3  myfortran01.f90  

ifort -c -O3  myfortran02.f90   

ifort -c -O3  myfortran03.f90 

ls -ltr

rm a.out

ifort -o myexe -O3 myfortran01.o  myfortran02.o  myfortran03.o

ls -ltr

./myexe
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Data Types, Variables, and Operations
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Data Types

• What and why types?

• Each type was defined, so that a reasonable amount of bits or BYTEs 
allocated in memory to store such values with certain format.  

• Once a data type is defined, we can use it, forgetting its details. 

• FORTRAN has the following types defined in the language as intrinsic 
types. Programmers can define more combined data types for their 
own projects. 
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Intrinsic Types

• INTEGER 

• REAL

• DOUBLE PRECISION 

• COMPLEX

• DOUBLE COMPLEX

• LOGICAL

• CHARACTER
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INTEGER Type

• 2

• 5

• INTEGER :: I, J, K 

• INTEGER :: LIMIT, SEAT_NUMBER = 34

• INTEGER, PARAMETER :: NUMBER_OF_MONTHS_A_YEAR = 12
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INTEGER Type

• is for one integer.

• normally has 64 bits (8 BYTEs) in memory.

• one bit is used for sign, maybe 1 meaning +, 0 for -.

• the rest 63 bits are for the actual integer absolute value. 

• the maximum positive value can be stored is 2**63 -1 = 9,223,3…,807

• Usually one would assume the type is big enough for holding values 
we are interested, then forget all above details. In case an integer is 
bigger than the type can express, an overflow error will be reported 
then the code running will be stopped automatically. All other types 
similar. 
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REAL Type

• 2.0

• 5.4e12

• REAL :: R, RG, SPEED = 90.0, DISTANCE

• REAL, PARAMETER :: MASS_OF_THE_OBJECT = 1.45

• A REAL usually has 32 bits (4 BYTEs) in memory (single precision).
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DOUBLE PRECISION Type

• 2.0d0

• 5.4d12

• DOUBLE PRECISION :: R, RG, SPEED = 90.0d0

• A DOUBLE PRECISION usually has 64 bits (8 BYTEs) in memory (double 
precision).
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COMPLEX Type

• (1.0, 2.0)

• (4.6e22, 5.4e12)

• COMPLEX :: R, RG, SPEED = (0.0, 90.0)

• A COMPLEX usually has 64 bits (8 BYTEs) in memory (two single 
precision).

39



DOUBLE COMPLEX Type

• (1.0d0, 2.0d0)

• (4.6d-22, -5.4d12)

• DOUBLE COMPLEX :: R, RG, SPEED = (0.0d0, 90.0d0)

• A DOUBLE COMPLEX usually has 128 bits (16 BYTEs) in memory (two 
double precision).
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Although a kind number can be further specified

• INTEGER (KIND = 2)

• INTEGER (KIND = 4)

• REAL (KIND = 4)

• DOUBLE PRECISION (KIND = 4)

• COMPLEX (KIND = 6)

• DOUBLE COMPLEX (KIND =8)

• I personally do not suggest it, as kind numbers are usually processor 
or compiler dependent, rather than universal applicable. 
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Other ways to specify BYTEs

• INTEGER*8

• REAL*8 !double precision

• REAL*16           !quadruple precision

• COMPLEX*16  !double precision

• COMPLEX*32  !quadruple precision

• which are good enough for most scientific computations and 
universally applicable. 
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Implicit rules
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Fortran adopted an implicit rule for long period of time. It is called I-N 
rule, which means any variable beginning with I, J, K, L, M, N are 
assumed as integer type, otherwise real type. Then in such a case, 
variables can be used directly without declaration. This rule saved 
some typing effort for programming. But later people realized that even 
very heavy typing is ignorable compared with other effort in 
programming, e.g. debugging. Explicitly defining variables help 
programming to reduce errors, so more preferred now. In order to get 
rid of the implicit rule, the statement 

IMPLICIT NONE

can be used.



LOGICAL Type

• Only has two possible values

• .TRUE.

• .FALSE.

• .TRUE. may also be denoted as T or 1

• .FALSE. may be denoted as F or 0. 

• LOGICAL :: A1 = .TRUE., FFF = .FALSE.
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CHARACTER Type

• "s"

• "Kingston is a great place to visit!"

• CHARACTER (LEN=11) :: AAA 

• CHARACTER (LEN=11) :: AA1 = 'KINGSTON'

• CHARACTER (LEN=11) :: AAB = "KINGSTON IS"

• CHARACTER (LEN=11) :: B_2 = "KINGSTON IS GREAT!"

• CHARACTER (LEN=*), PARAMETER   :: &

• BB_A = "Kingston is a great place to visit!"
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TEST IT with file t1.f90
PROGRAM A_TEST

CHARACTER (LEN=11) :: AAA 

CHARACTER (LEN=11) :: AA1 = "KINGSTON"

CHARACTER (LEN=11) :: AAB = "KINGSTON IS"

CHARACTER (LEN=11) :: B_2 = "KINGSTON IS GREAT!"

CHARACTER (LEN=*), PARAMETER   :: BB_A = "Kingston is a great place to visit!"

PRINT*, AA1

PRINT*, AAB

PRINT*, B_2

PRINT*, BB_A

STOP

END PROGRAM A_TEST

Ifort t1.f90

./a.out
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Variables 

• Variables are essentially the variables of mathematics.

• However they must be defined/declared as fixed data types at the 
beginning of the code unit where they will be assessed. 

• Then the compiler will allocate enough space in memory for them, 
and of course specify the format to hold data. 

• Must be initialized with values before being read. The values can be 
changed and read unlimitedly later. But the data type can not be 
changed.

47



Basic operations on numbers 
Program test_02

integer  ::  i1,  i2, i3

real        ::  rl1, rl2, rl3

i1 = 4;  i2 = 3

i3 = i1 + i2

Print*, i1, i2, i3, i1-i2, i1*i2, i1/i2, i1**i2

rl1 = 4;  rl2 = 3

rl3 = rl1 + rl2

Print*, rl1, rl2, rl3, rl1-rl2, rl1*rl2, rl1/rl2, rl1**rl2

Stop

End Program test_02
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Integer divisions 

Program test_03

Print*, "Integer divisions: ", 1/3, 2/3, 3/3, 4/3, 5/3, 6/3

Print*, "Real divisions: ", 1.0/3, 2/3.0, 3./3, 4.0/3.0, 5./3., 6.0/3

Stop

End Program test_03
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Operations on different types

Program test_04

Double precision :: dp = 4.5d0

Print*, 1 + 2.9, 3.0 + 3, 1 + dp, 4.3 + dp

Stop

End Program test_04

Integer  => real or double precision

Low precision => high precision
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Assignment with different types 
Program test_06

Integer :: ii = 4, ii2, ii3

Real :: rr =5.123456789123456789e0, rr2, rr3

Double precision :: dp = 6.123456789123456789d0, dp2, dp3

ii2 = rr;  ii3 = dp

Print*, ii2, ii3

rr2 = ii;  rr3 = dp

Print*, rr2, rr3

dp2 = ii;  dp3 = rr

Print*, dp2, dp3

Stop

End Program test_06

Always converted into the type of the variable. 
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Precedence  
Program test_07

Print*, 1+2-3, 1-3+2, 1+2*3, 1*2+3

Print*, 4*2/3, 4/2*3, 4*(2/3), 4/(2*3)

Print*, 2**3*5, 9*3**2

Stop

End Program test_07
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Precedence: 

**      exponentiation 

* /     multiplication,   division

+  - addition,    subtraction

Use parentheses ( )  to change or make sure precedence.



Operations on logical variables
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Program test_09

Print*, .not. .true.,  .not.  .false.

Print*, .true. .and.  .true.,   .true. .and.  .false.

Print*, .true. .or.  .true.,   .true. .or.  .false.

Print*, .true. .eqv.  .true.,   .true. .eqv.  .false.

Print*, .true. .neqv.  .true.,   .true. .neqv.  .false.

Stop

End Program test_09



Data comparisons resulting in logical values
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Program test_10

Print*, 5 > 6,    7 < 8 

Stop

End Program test_10

.lt.        or      <                   less than

.le.       or      <=                 less than or equal

.eq.      or      ==                equal 

.ne.      or     /=                  not equal

.gt. or     >                    great than

.ge.      or     >=                  great than or equal



Operations on characters  
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Program test_12

print*, "Queen's Univer"//"sity is in Kingston." 

Stop

End Program test_12

Concatenation  



Character substrings   
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Program test_14

Implicit none

Character (len=40) :: a_string = "Queen's University is in Kingston." 

Print*, a_string

Print*, a_string(:6)

Print*, a_string(8:)

Print*, a_string(4:12)

Print*, a_string(9:9)

Stop

End Program test_14



Derived data types
type student 

character (len=20) :: name

integer                     :: id

integer                     :: grade

real                           :: age

real                           :: height

end type student

type(student)    ::   a_queens_student

a_queens_student%age
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Conditional branches  
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IF statement 

if  (a condition  is  true)   (do something)

if (iii > 9) print*, iii
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GO TO statement 
• An example 

if  (a condition  is  true)   go to 25

(other statements) 

25   c = a + b

(other statements)

• Not suggested.
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IF Construct 
• It allows us to code sections of code to be executed under conditions.

• Most cases, different conditions execute different part/path of code.

• The general form

if  (condition1  is  true)   then

(do some things accordingly) 

else if  (condition2   is   true)    then

(do some other things accordingly) 

else if  (condition3   is   true)    then

(do some other things accordingly) 

else if  (…   is true)  then

(do some other things accordingly) 

else

(do other things accordingly) 

end if

• All else if  and else constructs are optional and no limit on number of else if constructs. 
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IF Construct 
• An example

var = 5

if  (var > 10)  then

print*, "var has value ",  var, " and bigger than 10. "

else if  (var < 10) then

print*, "var has value ",  var, " and less than 10. "

else

print*, "var has value ",  var, " and is 10. "

end if
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IF Construct 
• can be unlimited nested.

• Example 
if (my_dad_is_at_home) then

(my dad will cook)
else 

if (my_mom_is_at_home) then
(my mom will cook)

else
(I will cook)

end if
end if
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CASE Construct 

• Example 

select case (an_integer)

case (:-1)

(do things accordingly)

case (0)

(do things accordingly)   

case (1:7)

(do things accordingly)

case (8:22)

(do things accordingly)

case default  

(do things accordingly)

end select
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Repeating constructs
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If you have 

• log(2.0) + log(3.0) + log(4.0) + log(5.0) + … + log(10000.0) to 
calculate, 

• you would absolutely not like to write all such operations one by one.

• Loops are for such repeated works and can make life much easier. 
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It can be done by a do loop
program test_20

implicit none

integer*8 :: i

real*8       :: result

result = 0.0d0

do i = 2, 10000

result = result + log(i * 1.0d0)

end  do

print*, result

stop

end program test_20
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The do loop
• takes a form of

[name:]  do an_integer = beginning, ending, step

(do something for the iteration)

end do [name]

• Example

integer :: a 

do a = 2001, 2017

print*, a, " is a year of this centrury. "

end do
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CYCLE statement in do loop
• integer :: ii

do ii = 1, 1000, 2

(do something for the iteration)

end do 

• is equivalent to

ONLY_FOR_ODD_NUMBERS:   do ii = 1, 1000

if ( (ii/2) == 0) cycle ONLY_FOR_ODD_NUMBERS 

(do something for the iteration)

end do ONLY_FOR_ODD_NUMBERS 
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EXIT statement in do loop

UNLIMITED_LOOP:   do 

if (some condition is met) exit UNLIMITED_LOOP

(do something for the iteration)

end do UNLIMITED_LOOP

70



Loops can be unlimited nested

program test_22

implicit none

integer :: i, j

do i = 1, 9

do j = 1, 9

print*, "The multiplication of ",i," and ",j," is ",i*j

end do

end do

stop

end program test_22
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Arrays
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An array
• consists of a rectangular set of elements (scaler variables), all of the exactly same 

type. 

• real, dimension(10) :: a

• then the successive elements of the array are a(1), a(2), …, a(10)

• real, dimension(-10:20) :: vt

• the elements are vt(-10), vt(-9), vt(-8), …, vt(20)

• real, dimension(5, 4)  :: b

• then the successive elements of the array in memory are 

b(1, 1), b(2, 1), b(3, 1), b(4, 1), b(5, 1),

b(1, 2), b(2, 2), b(3, 2), b(4, 2), b(5, 2),

b(1, 3), b(2, 3), b(3, 3), b(4, 3), b(5, 3),

b(1, 4), b(2, 4), b(3, 4), b(4, 4), b(5, 4)

they can also declared as 

real :: a(10),  vt(-10:20),  b(5,4)
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Arrays should be initialized before being used
• real :: a(10),  vt(-10:20),  b(5,4)

• a = 0.0d0

• vt = 0.0d0

• b = 0.0d0

• character (len=20) :: aaa(25,300)

• aaa = ' '

74



Subarrays and collective operations
real :: a(10),  vt(-10:20),  b(5,4)

vt(-2:2) = (/1.4, 3.6, 7.3, 8.9, 13.8/)

vt(:2) = 9.0

vt(3:) = 25.0

vt(-8:2:3) = 64.0

b = 24.0

a(2:5) = vt(-3:0) + b(1:4, 3)
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Elemental operations on arrays
real :: b(5,4)

integer :: i, j

do i = 1, 4

do j = 1, 5

b (j, i) = (sin(i*1.0))**j

end do

end do
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Elemental operations on arrays
real :: b(5,4), c(4, 6), d(5,6)

integer :: i, j, k

b = 3.4

c = 5.9

d = 0.0

do i = 1, 6

do j = 1, 5

do k = 1, 4

d (j, i) = d(j, i) + b(j, k) * c(k, i)

end do

end do

end do
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Allocatable arrays
• Array sizes may not be known until run time

real, allocatable :: arr1(:), arr2(:, :),  array8(:, :, :, :)

integer :: i=3, j=5, k=6, l=8

…

allocate(arr1(i))

allocate(arr2(k,j))

allocate(array8(i,j,k,l))

…

deallocate(arr1, arr2, array8)
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Code structures: 
modules, program, subroutines, and functions
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Nowadays, people do everything step by step
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Programming is not an exception 
• A big computational task is usually cut into many smaller ones.

• With input and output assumed to some degrees, what and how to 
complete the inside of each smaller task is usually independent on 
any other smaller tasks. In other words, the inside is encapsulated.  

• Functions/subroutines are used for such smaller tasks or steps.

• Normally when we code functions/subroutines, we can focus on the 
specific small task, forgetting the whole big complicated task. 

• Functions/subroutines can be unlimitedly re-used and make code well 
structured. 

• Additionally, modules are a great help in many respects. 

• Functions/subroutines can only access their arguments, local 
variables, and data in the modules whey use.
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The general form of functions

[type] function function_name(dummy_argument_list)

! function body (statements)

! function_name is the variable to be assigned new value 

! to send back.

return 

end function function_name
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A function example
real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return 

end function distance

program test_30

interface 

real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

end function distance

end interface 

real*8 :: a1, b1, a2, b2

a1 = 2.3d0;  b1 = 5.3d0;   a2 = 3.2d2;   b2 = 6.3d4

print*, distance(a1, b1, a2, b2)

end  program test_30
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The return data type can also be written as 
function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2, distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return 

end function distance

program test_30

interface 

function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2, distance

end function distance

end interface 

real*8 :: a1, b1, a2, b2

a1 = 2.3d0;  b1 = 5.3d0;   a2 = 3.2d2;   b2 = 6.3d4

print*, distance(a1, b1, a2, b2)

end  program test_30
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Normally, when a function is called

all arguments should be provided in sequence, like

real*8  function my_functioin(ar1, ar2, ar3, … arn)

…

end function my_functioin

aa = my_functioin(act1, act2, act3, … actn)
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Argument names can also be used when a 
function is called

real*8  function my_function(ar1, ar2, ar3, … arn)

…

end function my_function

aa = my_function(act1, act2, arn = act3, … ar3 = actn)

then the argument name is called keyword. Once a keyword 
argument is used, no more pure positional arguments allowed after it.
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Optional arguments in functions
should be declared at the end of argument list

real*8  function my_function(ar1, ar2, ar3, … arn, p1, p2, …, pn)

real*8, optional :: p1, p2, …, pn

if (present(p1)) then

…

end if

…

end function my_function

aa = my_function(act1, act2, act3, … actn, 3.5d0)
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Functions as arguments in functions

real*8  function minimum(ar1, ar2, a_function)

real*8 :: ar1, ar2

interface 

real*8  function a_function(x)

real*8 :: x

end function a_function

end interface

…

end function minimum

88

real*8  function  pain(x)

real*8 :: x

pain = 72.0d0 + 3.0d0*x + 5.0d0*x**2

end function pain

aa = minimum(10.d0, 100.d0, pain)   



Actually 

program program_name

…

end  program program_name

is also a function, but called the unique main function, starting point of 
code running. 
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Subroutines are very similar to functions

but everything is in the argument list including the return variable, 
then may return many variables.
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Subroutine example 
real*8 function distance(x1, y1, x2, y2)

real*8 :: x1, y1, x2, y2

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return 

end function distance

subroutine get_distance(x1, y1, x2, y2, distance)

real*8 :: x1, y1, x2, y2, distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return 

end subroutine get_distance

aa = distance(a1, b1, a2, b2)

call get_distance(x1, y1, x2, y2, distance)
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Argument intent 

subroutine get_distance(x1, y1, x2, y2, distance)

real*8, intent(in)    :: x1, y1, x2, y2

real*8, intent(out) :: distance

distance = sqrt ((x1 - x2)**2 + (y1 - y2)**2)

return 

end subroutine get_distance

real*8, intent(inout) :: aaa, bbb
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Modules

can be used to declare global data and other specification statements 
(like interface block). It can be accessible when a "use" statement of it 
is coded.

Modules can use other previous modules.

93



Module example
module  factorials

implicit none

integer, parameter :: size_of_factls = 10

real*8  ::  factls(size_of_factls)

end module factorials

subroutine ini_factorials()

use factorials

implicit none

integer :: i

factls(1) = 1.0d0

do i = 2, size_of_factls

factls(i) = factls(i-1) * i

end do

return

end subroutine ini_factorials
94

subroutine print_a_factorial(i)

use factorials    

implicit none

integer :: i

print*, factls(i)

end subroutine print_a_factorial

program test_40

use factorials

implicit none

call ini_factorials()

call print_a_factorial(8)

stop

end program test_40



Module, functions, subroutines, and the main function

can contain internal subprograms (functions and/or 
subroutines), after a 

contains

statement. 

An internal subprogram automatically has access to all the 
host's entities, including the ability to call its other internal 
subprograms.  
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Module, functions, subroutine, and the main function
module  factorials

implicit none

integer, parameter :: size_of_factls = 10

real*8  ::  factls(size_of_factls)

contains

subroutine ini_factorials()

integer :: i

factls(1) = 1.0d0

do i = 2, size_of_factls

factls(i) = factls(i-1) * i

end do

return

end subroutine ini_factorials

end module factorials
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subroutine print_a_factorial(i)

use factorials

implicit none

integer :: i

print*, factls(i)

end subroutine print_a_factorial

program test_40

use factorials

implicit none

call ini_factorials()

call print_a_factorial(8)

stop

end program test_40



Overloading 
A group of functions/subroutines usually of the same functionality but with 
different dummy argument list of types, can be "renamed" the same in a interface 
block, although they originally have different names.

module my_renaming

interface the_new_universal_name

function old_name_001(…)

…

function old_name_002(…)

…

function old_name_003(…)

…

end interface  the_new_universal_name

end module  my_renaming

use  my_renaming 97



Automatic objects 
subroutine swap(a, b)

real*8 :: a(:),  b(:)
real*8 :: work(size(a))
work = a
a = b
b = work

end subroutine swap

subroutine word_process(word1)
character(len=*) :: word1
character(len=len(word1)) :: word2
…
end subroutine word_process 98

real*8 :: a(10), b(10)

real*8 :: cc(800), dd(800) 

… 

call swap(a, b)

call swap(cc, dd)

character(len=20) :: aa1

character(len=436) :: ggt

call word_process(aa1)

call word_process(ggt)



Intrinsic procedures
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Elemental numeric functions

abs(a), aimag(z), aint(a), anint(a), ceiling(a), 

cmplx(x [,y]), floor(a), int(a), nint(a), real(a)

conjg(z), dim(x, y), max(a1, a2 [, a3, …]), 

min(a1, a2 [, a3, …]), mod(a, p), 

modulo(a, p), sign(a, b)
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Elemental mathmatical functions

acos(x), asin(x), atan(x), atan2(y, x), cos(x), cosh(x),

exp(x), log(x), log10(x), sin(x), sinh(x), sqrt(x), tan(x), 

tanh(x)
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Character-integer conversions 

achar(i), char(i), iachar(c), ichar(c)
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String-handling functions

len(string) 

adjustl(string), adjustr(string), 

index(string, substring [, back]) 

len_trim(string), scan(string, set [, back])

verify(string, set [, back])

repeat(string, ncopies)

trim(string)
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Array operations

dot_product(vector_a, vector_b)

matmul(matrix_a, matrix_b)

all(mask), any(mask), count(mask)

maxval(array), minval(array), 

product(array), sum(array)

allocated(array)

lbound(array [, dim]), ubound(array [, dim])

shape(array), size(array [, dim])

transpose(matrix)
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Time 

call date_and_time([date] [, time] [, zone] [, values])

call system_clock([count] [, count_rate] [, count_max])

call cpu_time(time)
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Random numbers 

call random_number(harvest)

call random_seed([size] [put] [get])
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Input/output and external files
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Keyboard input and terminal output

read(*, *) variables

print*, variables

write(*,*) variables

108



External files 

unit_number = 25

open(unit_number, file = '…/file1.dat')

read(unit_number, *) variables

close(unit_number)

open(unit_number, file = '…/file2.dat')

write(unit_number, *) variables

close(unit_number)
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read/write formats

read(unit_number, 10) x, y, z

write(unit_number, 10) x, y, z

10 format(3e20.12)

or

read(unit_number, '(3e20.12)') x, y, z

write(unit_number, '(3e20.12)') x, y, z
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read/write formats

read(unit_number, '(a, i8, f20.12)') x, y, z

write(unit_number, '(a, i8, f20.12)') x, y, z

Many formats, inquiries, and various operations can be done on 
formatted, unformatted, direct-access files.
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Application example: 𝜋 calculation
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𝜋 calculation based on half circle
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𝜋 =
ℎ𝑎𝑙𝑓_𝑐𝑖𝑟𝑐𝑙𝑒

𝑟



𝜋 calculation based on half circle

114

𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟



𝜋 calculation based on half circle
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𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟



𝜋 calculation based on half circle
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𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟



𝜋 calculation based on half circle
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𝜋 ≈
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part  
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2



𝜋 calculation based on half circle
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𝜋 =
σ𝑐ℎ𝑜𝑟𝑑𝑠

𝑟

ℎ: old chord in blue
𝑣1: dark red dashed part  
𝑣1 = 𝑟2 − (ℎ/2)2
𝑣2: black dashed part

𝑣2 = 𝑟 − 𝑣1

new chord in red

ℎ/2 2 + (𝑣2)2

MODULE BASIC_DATA_MDL

IMPLICIT NONE

REAL*8, PARAMETER :: RADIUS  = 1.0D0

REAL*8, PARAMETER :: RADIUS_SQUIRED = RADIUS ** 2

REAL*8, PARAMETER :: REQUIRED_ACCURACY  = 1.0D-12

END MODULE BASIC_DATA_MDL

REAL*8 FUNCTION NEXT_CHORD(CHORD_TRIED)

USE BASIC_DATA_MDL

REAL*8 :: CHORD_TRIED, HALF, VT1, VT2

HALF = CHORD_TRIED/2

VT1 = SQRT(RADIUS_SQUIRED - HALF * HALF)

VT2 = RADIUS - VT1

NEXT_CHORD = SQRT(HALF * HALF + VT2*VT2)

END FUNCTION NEXT_CHORD



𝜋 calculation based on half circle
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MODULE INTERFACE_MDL

INTERFACE

REAL*8 FUNCTION NEXT_CHORD(CHORD_TRIED)

REAL*8 :: CHORD_TRIED

END FUNCTION NEXT_CHORD

END INTERFACE

END MODULE INTERFACE_MDL



𝜋 calculation based on half circle
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𝜋 =
σ 𝑐ℎ𝑜𝑟𝑑𝑠

𝑟
r=1.0PROGRAM PI_CALCULATION

USE BASIC_DATA_MDL

USE INTERFACE_MDL

INTEGER    :: EFFORT

REAL*8       :: CHORD, NUMBER_OF_CHORDS, PREVIOUS_PI, CURRENT_PI, RELATIVE_ERROR    

EFFORT = 1; CHORD = SQRT(RADIUS_SQUIRED + RADIUS_SQUIRED)

NUMBER_OF_CHORDS = 2.0D0

PREVIOUS_PI = 8.0D10;      CURRENT_PI = CHORD * NUMBER_OF_CHORDS / RADIUS

RELATIVE_ERROR = ABS(CURRENT_PI - PREVIOUS_PI) / CURRENT_PI

WORKING_HARD: DO

EFFORT = EFFORT + 1;    CHORD = NEXT_CHORD(CHORD)

NUMBER_OF_CHORDS = 2.0D0 * NUMBER_OF_CHORDS

PREVIOUS_PI = CURRENT_PI;    CURRENT_PI = CHORD * NUMBER_OF_CHORDS / RADIUS

RELATIVE_ERROR = ABS(CURRENT_PI - PREVIOUS_PI) / CURRENT_PI

IF(RELATIVE_ERROR < REQUIRED_ACCURACY) EXIT WORKING_HARD

END DO WORKING_HARD    

PRINT*,  EFFORT,   CURRENT_PI,   PREVIOUS_PI

END PROGRAM PI_CALCULATION



𝜋 calculation for higher accuracy 
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Change all real*8 into real*16   and  

REQUIRED_ACCURACY  = 1.0D-12  into 1.0D-32



𝜋 in wiki
• https://en.wikipedia.org/wiki/Pi 

• The first 50 decimal digits are 
3.14159265358979323846264338327950288419716939937510
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